Probabilistic Logic CNF for Reasoning

Song-Chun Zhu, Sinisa Todorovic, and Ales Leonardis

At CVPR, Providence, Rhode Island
June 16, 2012

Goal

activity recognition in structured domains

Goal

what: objects, events?

where, and when?
why: by explaining space-time relationships?

Three Semantic Levels of Events

- Primitive actions:
- single actor-object interaction
- punctual actions
- repetitive actions
- Activity:
- Short-term human-humanobject interactions
- e.g., passing the ball, hugging
- Events:
- Long-term interactions of a group of people and objects

In this Talk: Tracking \& Parsing are Given

Input Noisy detections Our results

"Multiobject Tracking as Maximum Weight Independent Set" CVPR 2011

In Addition to Usual Challenges...

- Who has the ball? -- partial occlusion
- Is the red player on offense? -- no direct cues
- Who violated the rules of basketball? -- domain

Two Key Ideas

1.Ground reasoning onto parse graphs of primitive actions

Knowledge representation
info
flow

Two Key Ideas

2.Use domain knowledge to resolve uncertainty

Top-down correction of errors in tracking, parsing, entity resolution

Knowledge Representation

- Probabilistic First-Order Logic
- Rota \& Thonnat '00 -- Declarative models
- Siskind '01 -- Event logic
- Nevatia et al. '04 -- Probabilistic ontology
- Shet et al. '06-- Multivalued logic
- Richardson \& Domingos '06-- MLN
- Shet et al. '07 -- Bilattice logic
- Ryoo \& Aggarwal '09 -- Space-time logic
- Fern '09 - Penalty logic
- Kersting \& Raedt '11 -- Bayesian logic

Knowledge Base

$$
\Sigma=\left\{\left(\phi_{1}, w_{1}\right), \ldots,\left(\phi_{n}, w_{n}\right)\right\}
$$

a set of weighted logic formulas

a distribution of costs

$$
w_{n}=P\left(\phi_{n} @ I\right)
$$

a time interval

Logic Formula

$\operatorname{PassTo}(p, q) \rightarrow\left(\operatorname{Pass}(p) \wedge_{m} \operatorname{BallMoving} \wedge_{m} \operatorname{Catch}(q)\right)$

Event symbol:
e.g., interaction among a number of object types

Syntax

Syntax

$\operatorname{PassTo}(p, q) \rightarrow\left(\operatorname{Pass}(p) \wedge_{m} \operatorname{BallMoving} \wedge_{m} \operatorname{Catch}(q)\right)$

Event symbol:
e.g., interaction among a number of object types
negation

disjunction

Temporal relations between time intervals
$\phi \wedge_{R} \phi^{\prime} \quad R \subseteq \mathbb{R}$ where events are true

Allen Temporal Relations

I_{1}	Relation	I_{2}	English	Definition	Inverse
$\left[m_{1}, m_{2}\right]$	\mathbf{s}	$\left[n_{1}, n_{2}\right]$	starts	$m_{1}=n_{1}$ and $m_{2}<n_{2}$	si
$\left[m_{1}, m_{2}\right]$	f	$\left[n_{1}, n_{2}\right]$	finishes	$m_{1}<n_{1}$ and $m_{2}=n_{2}$	fi
$\left[m_{1}, m_{2}\right]$	d	$\left[n_{1}, n_{2}\right]$	during	$m_{1}>n_{1}$ and $m_{2}<n_{2}$	di
$\left[m_{1}, m_{2}\right]$	b	$\left[n_{1}, n_{2}\right]$	before	$m_{2}<n_{1}$	bi
$\left[m_{1}, m_{2}\right]$	m	$\left[n_{1}, n_{2}\right]$	meets	$m_{2}+1=n_{1}$	mi
$\left[m_{1}, m_{2}\right]$	o	$\left[n_{1}, n_{2}\right]$	overlaps	$m_{1}<n_{1} \leq m_{2}<n_{2}$	oi
$\left[m_{1}, m_{2}\right]$	$=$	$\left[n_{1}, n_{2}\right]$	equals	$m_{1}=n_{1}$ and $m_{2}=n_{2}$	$=$

[^0]
Truth Values Assigned to Event Occurrences

observable event occurrences
 X : D-Dribbling $(P 3) @[10,30]$ $W_{\text {from parse graphs }}$

hidden event occurrences
Y : Dribbling $(P 3) @[20,30]$

from reasoning

Interpretation

$(X, Y) \models\left(\operatorname{HasBall}\left(P_{1}\right) \vee \operatorname{HasBall}\left(P_{2}\right)\right) @[10,20]$
an event occurrence is true along interval $[10,20]$ in interpretation (X, Y)

Model

Reasoning = Most Probable Explanation

$$
\left(X^{*}, Y^{*}\right)=\operatorname{MPE}(X, \Sigma)=\arg \max _{(X, Y)} P(X, Y \mid \Sigma)
$$

We address intractable inference by:

- Compiling Σ into CNF form => And-Or graph (AOG)
- Ensuring completeness and consistency of AOG
- Metropolis-Hastings moves over:
- Logic formulas in Σ
- Arguments of the logic formulas
- Time intervals along which the formulas are true

Compilation of KB to AOG

Key idea:
Arithmetic circuit -- Data structure for efficient inference Darwiche [2003]

Compilation of KB to AOG

parse graphs of primitive actions

Compilation of KB to AOG

Compilation of KB to AOG

Compilation of KB to AOG

$$
w_{n}=P\left(\phi_{n} @ I\right)
$$

AND
primitive action occurrence

$$
X_{n, i}=\phi_{n} @ I_{i}
$$

parse graphs of primitive actions

Valid Compilation

Theorem: AOG is valid iff it is complete and consistent

Complete: Under sum, children cover the same set of variables

Consistent: Under product, no variable in one child and negation in another

Efficiency

Theorem: Valid AOG allows polynomial inference in the number of nodes

Complete: Under sum, children cover the same set of variables

Consistent: Under product, no variable in one child and negation in another

Most Probable Explanation

Identifies:

- Logic formulas in Σ
- Arguments of formulas
- True time intervals of formulas

Metropolis-Hastings Moves

two probable interpretations

$$
A=(X, Y)_{A} \quad B=(X, Y)_{B}
$$

$$
\begin{aligned}
& \alpha(A \rightarrow B)=\min \left(1, \frac{Q(B \rightarrow A) P(B \mid G)}{Q(A \rightarrow B) P(A \mid G)}\right) \\
& \text { proposal distribution }
\end{aligned}
$$

efficient proposals of time intervals
compiled KB into AOG without enumerating exponentially many subintervals of all intervals

CVPR 201I

Scheduling the Moves -- Open Problem

How to prioritize particular moves over:

- Logic formulas in Σ
- Arguments of formulas
- True time intervals of formulas

Our approach:
I. Map the current interpretation into a feature vector

$$
(X, Y)_{A} \rightarrow \Psi_{A}
$$

2. Classify the feature vector

Results -- CVPR 11

reasoning: most probable explanation

Results -- CVPR 11

Confusion tables

Summary

Reasoning helps:

- correct tracking/parsing errors
- disambiguate uncertainty
- address higher-level events

THANK YOU

[^0]: time interval

