# Probabilistic Logic CNF for Reasoning

Song-Chun Zhu, Sinisa Todorovic, and Ales Leonardis

At CVPR, Providence, Rhode Island June 16, 2012

#### Goal



tracking

reasoning

activity recognition in structured domains

#### parsing

#### Goal



#### what: objects, events?

where, and when?

why: by explaining space-time relationships?

# **Three Semantic Levels of Events**

- Primitive actions:
  - single actor-object interaction
  - punctual actions
  - repetitive actions
- Activity:
  - Short-term human-humanobject interactions
  - e.g., passing the ball, hugging
- Events:
  - Long-term interactions of a group of people and objects



# In this Talk: Tracking & Parsing are Given

#### Input Noisy detections Our results



# "Multiobject Tracking as Maximum Weight Independent Set" CVPR 2011

Saturday, June 16, 12

#### In Addition to Usual Challenges...



tracking

reasoning

- Who has the ball? -- partial occlusion
- Is the red player on offense? -- no direct cues
- Who violated the rules of basketball? -- domain

# **Two Key Ideas**

1.Ground reasoning onto parse graphs of primitive actions



# **Two Key Ideas**

#### 2.Use domain knowledge to resolve uncertainty Top-down correction of errors in tracking, parsing, entity resolution



# **Knowledge Representation**

- Probabilistic First-Order Logic
  - Rota & Thonnat '00 -- Declarative models
  - Siskind '01 -- Event logic
  - Nevatia et al. '04 -- Probabilistic ontology
  - Shet et al. '06 -- Multivalued logic
  - Richardson & Domingos '06 -- MLN
  - Shet et al. '07 -- Bilattice logic
  - Ryoo & Aggarwal '09 -- Space-time logic
  - Fern '09 Penalty logic
  - Kersting & Raedt '11 -- Bayesian logic

#### **Knowledge Base**

 $\Sigma = \{(\phi_1, w_1), \dots, (\phi_n, w_n)\}$ 

a set of weighted logic formulas

$$w_n = P(\phi_n @I)$$

a distribution of costs of violating  $\phi_n$  over a time interval

# Logic Formula

# PassTo $(p,q) \rightarrow (Pass(p) \land_m BallMoving \land_m Catch(q))$

Event symbol: e.g., interaction among a number of object types

# Syntax



# **Syntax**

PassTo $(p,q) \rightarrow (Pass(p) \land_m BallMoving \land_m Catch(q))$ 

Event symbol: e.g., interaction among a number of object types

Three types of relations:

negation

disjunction  $\phi \lor \phi'$ 

Temporal relations between time intervals where events are true

 $\phi \wedge_R \phi' \quad R \subseteq \mathbb{R}$ 

### **Allen Temporal Relations**

| $I_1$       | Relation | $I_2$        | English  | Definition                         | Inverse |
|-------------|----------|--------------|----------|------------------------------------|---------|
| $[m_1,m_2]$ | S        | $[n_1, n_2]$ | starts   | $m_1 = n_1 \text{ and } m_2 < n_2$ | si      |
| $[m_1,m_2]$ | f        | $[n_1, n_2]$ | finishes | $m_1 < n_1 \text{ and } m_2 = n_2$ | fi      |
| $[m_1,m_2]$ | d        | $[n_1, n_2]$ | during   | $m_1 > n_1 \text{ and } m_2 < n_2$ | di      |
| $[m_1,m_2]$ | b        | $[n_1, n_2]$ | before   | $m_2 < n_1$                        | bi      |
| $[m_1,m_2]$ | m        | $[n_1, n_2]$ | meets    | $m_2 + 1 = n_1$                    | mi      |
| $[m_1,m_2]$ | 0        | $[n_1, n_2]$ | overlaps | $m_1 < n_1 \le m_2 < n_2$          | oi      |
| $[m_1,m_2]$ | =        | $[n_1,n_2]$  | equals   | $m_1=n_1 	ext{ and } m_2=n_2$      | =       |



#### **Truth Values Assigned to Event Occurrences**



#### Interpretation

#### $(X, Y) \models (\text{HasBall}(P_1) \lor \text{HasBall}(P_2)) @[10, 20]$

an event occurrence is true along interval [10,20] in interpretation (X, Y)

#### Model



#### **Reasoning = Most Probable Explanation**

 $(X^*, Y^*) = MPE(X, \Sigma) = \arg \max_{(X,Y)} P(X, Y|\Sigma)$ 

We address intractable inference by:

- Compiling  $\Sigma$  into CNF form => And-Or graph (AOG)
- Ensuring completeness and consistency of AOG
- Metropolis-Hastings moves over:
  - $\bullet$  Logic formulas in  $~\Sigma$
  - Arguments of the logic formulas
  - Time intervals along which the formulas are true

Key idea:

Arithmetic circuit -- Data structure for efficient inference Darwiche [2003]









# **Valid Compilation**

#### **Theorem:** AOG is valid iff it is complete and consistent

**Complete:** Under sum, children cover the same set of variables

**Consistent:** Under product, no variable in one child and negation in another



# Efficiency

# **Theorem:** Valid AOG allows polynomial inference in the number of nodes

**Complete:** Under sum, children cover the same set of variables

**Consistent:** Under product, no variable in one child and negation in another



#### **Most Probable Explanation**



#### **Metropolis-Hastings Moves**

two probable  $A = (X, Y)_A$   $B = (X, Y)_B$  interpretations

$$\alpha(A \to B) = \min \left(1, \frac{Q(B \to A)P(B|G)}{Q(A \to B)P(A|G)}\right)$$
proposal distribution
efficient proposals of time intervals
without enumerating exponentially many
subintervals of all intervals
CVPR 2011

#### **Scheduling the Moves -- Open Problem**

How to prioritize particular moves over:

- $\bullet$  Logic formulas in  $\,\Sigma\,$
- Arguments of formulas
- True time intervals of formulas



Our approach:

I. Map the current interpretation into a feature vector

$$(X,Y)_A \to \Psi_A$$

2. Classify the feature vector

#### **Results -- CVPR 11**

input parsing results



#### reasoning: most probable explanation



Saturday, June 16, 12

#### **Results -- CVPR 11**

#### Confusion tables



### Summary

Reasoning helps:

- correct tracking/parsing errors
- disambiguate uncertainty
- address higher-level events



#### THANK YOU