
1

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Lecture 5: 

Hierarchical Compositional Representations of 

Object Structure

Aleš Leonardis

University of Ljubljana
Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Birmingham
School of Computer Science

Centre for Computational Neuroscience & Cognitive Robotics

At CVPR, Providence, Rhode Island

June 16, 2012

Hierarchical Compositional Representations 
of Object Structure

Aleš Leonardis

Contributors: Marko Boben, Matej Kristan, Sanja Fidler, 
Domen Tabernik

University of Ljubljana
Faculty of Computer and Information Science

Visual Cognitive Systems Laboratory

University of Birmingham
School of Computer Science

Centre for Computational Neuroscience & Cognitive Robotics

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Outline

• Motivation (large number of object categories)

• Requirements

• Representation (And-Or Graphs) 

• Inference

• Learning

• Experiments (Videos)

• Extensions
– Flexible object structure

– Adding discriminative information

• Conclusions
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Large number of visual object classes
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Large number of visual object classes
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A large number of visual object classes
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Intra-class variability, articulations,…

• A large number of object classes

• Significant intra/inter-class variation

• Multiple articulations

• Multiple 3D poses

• Varying illuminations

• Objects can appear at any position

in an image, any scale, orientation…

Biederman 1987

image
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Tasks

• Recognition of exemplars

• Categorization
– Subordinate-

– Basic-

– Super-ordinate-level categories
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Tasks

• Grasping

• Manipulation

• Talking and reasoning 
about objects

8
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Central issues

Biederman 1987

Central issues:

• Representation

• Inference

• Learning
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How to tackle the problem?

• A variety of different representations 

S. Dickinson, “The evolution of object

categorization and the challenge of

image abstraction”, 

In Object categorisation: Computer and 
Human Vision Perspectives; S. J. 
Dickinson, A. Leonardis, B. Schiele, M. 
J. Tarr, Eds., Cambridge University 
Press 2009.
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Evolution of object models

Input 
Image 

3D categorical shape 
models, abstract 
volumetric parts, 
hierarchical

Idealized images, 
textureless, simple, 
blocks world scenes

3D exemplar shape 
models, 3D templates, 
polyhedron, CAD 
models

More complex objects, 
well-defined structure

2D exemplars, low-
level image-based 
appearance models

Complex textured 
objects

Adapted from S. Dickinson, The evolution of object categorization and the challenge of image abstraction, Object 

categorization: Computer and Human Vision Perspectives, Cambridge University Press 2009.

Categorical
Model

1970s

Binford’71, Nevatia’77, 
Marr’78, Biederman’85, 
Pentland’86, …

1980s 1990s 2000s 2010s

Grimson’84, Lowe’87, 
Huttenlocher’90

Turk’91, Murase’95, 
Nayar’95, Black’98

Schmid’97, Lowe’99, 
Lazebnik’05, Ferrari’06, 
Fergus’’07

2D categorical 
appearance models 
(hierarchical)

Local appearance 
abstraction

Complex textured 
objects, clutter, 
occlusion

?

Bridging the gap between 
low-level image features and 
high-level abstract models:

Learning increasingly 
complex models
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Bridging the gap

• Representations and learning: the key issues

• Object categorization (2D shape)

• Requirements: 
– A representation should:

• Support a variety of tasks

• Enable fast and robust object detection/segmentation/parsing

• Scale with the number of classes (modest increase in memory)

• Accommodate exponential variability of objects

• Enable efficient learning

12
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Requirements

• Inference

– Sub-linear in the number of classes

– Coping with noisy or missing information

• Learning should:

– Require minimal human effort

– Be done incrementally (no need for re-training the complete 

representation)

– Share-ability (in terms of representation and processing)

– Transfer of knowledge (learning time getting shorter)

– Scaffolding (gradual increase of knowledge)

# of classes

inference time
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Hierarchical Compositional Model
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Related work

• Hierarchical representations 
– Fukushima, Sarkar & Boyer, Riesenhuber & Serre & Poggio (HMAX), Mutch & Lowe, Lecun et al. 

(convolutional nets), Amit & D. Geman, S. Geman, Torralba, Borenstein & Epstein & Ullman, Scalzo & 
Piater, Bouchard & Triggs, Ahuja & Todorovic, S.C. Zhu & Mumford, L. Zhu & Yuille, Hinton, …

• Compositionality

– S. Geman & Bienenstock, Amit & D. Geman, Dickinson, Ettinger, S.C. Zhu & Mumford, Yuille et al., 
Todorovic & Ahuja, Ullman et al., Felzenswalb

• Unsupervised learning

– Utans, Serre & Riesenhuber & Poggio, Scalzo & Piater, Lecun, Hinton, Ommer & Buhmann, Yuille et 
al.

• Incremental learning

– Hinton, Krempp & Amit & Geman, Opelt & Pinz & Zisserman, Fei Fei & Fergus & Perona

���� unsupervised learning of hierarchical compositional shape hierarchy
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Hierarchical compositional model

• Architecture of the 
hierarchical vocabulary:
– at each layer the vocabulary 

contains a set of hierarchical 
deformable models called 
compositions.

– Each composition is defined 
recursively, i.e. is built from 
compositions from the 
previous layer.

– Compositions can be 
grouped (OR-ed) together 
based on their properties, 
e.g. geometric similarity.

– Compositions on the first 
layer are simple image 
features (e.g. Gabor feature 
vectors).
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Hierarchical compositional model

• Object representation: A hierarchical compositional shape vocabulary
• The compositions model

spatial relations among
their parts

Layer 3

Layer 2

Layer 1

le
ar

n
in

g
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Hierarchical compositional model

• Examples of learned whole-object shape models

giraffe

bottle

bicycle
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Hierarchical vocabulary

• Architecture of the 
hierarchical vocabulary 
(continued):

– Compositions on subsequent 
layers (> 1) encode 
increasingly larger shapes; 
layer on which the whole 
object shape is encoded is 
called object layer.

– The final, object class layer
or category layer is not 
compositional, but only pools 
together all corresponding 
object layer compositions.
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Hierarchical vocabulary

• Structure of composition

– Geometric configuration of the composition is modelled by 
relative spatial relations between each of the parts and one part 
called a reference part.

part 1 –

reference part
part 2 part 3

Geometry

µ2 = (−8, 3)
Σ2 = 
µ3 = (8, 3)
Σ3 = 

µ1 = (0, 0)
Σ1 = id · ε
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Hierarchical vocabulary

• Structure of composition
– Geometric configuration of the composition is modelled by 

relative spatial relations between each of the parts and 
one part called a reference part.

– We allow for repulsive (or “forbidden”) parts. These are 
the parts that the composition cannot consist of. We need 
them to deal with compositions that are supersets of one 
another.

ω1 ω2
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Hierarchical vocabulary

...
layer ℓ − 1

...

layer ℓ

⋮	

⋮	

grouping (OR) 
edges

structural (AND) 
edges

...

...

... ...

• We represent vocabulary as an AND-OR graph
– Nodes of the graph represent compositions (AND) and 

grouped compositions (OR).

– Edges of the graph represent relations between them: 
compositional relations (AND) or grouping relations (OR)

compositions

grouped (OR) 
compositions
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Hierarchical vocabulary – notation

Note: not to overload the notation, we will explain the inference 
and learning process under the assumption that we do not have 
OR compositions!

• Let Ω denote set and structure of all compositions; due to its 
hierarchical structure we write it as Ω = Ω1 ∪ Ω2 ∪ ... ∪ ΩO ∪

ΩC where Ωℓ = {ωi
ℓ}i , i = 1,...,N ℓ, is a set of compositions at 

layer ℓ.

• Composition structure:

– A composition ωℓ, ℓ > 1 consists of P parts.
(Note that P can be different for different compositions)

– Geometric relation of part p relative to the reference part is modelled 
by 2D Gaussians and denoted by θg p = (μp, Σp)
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Hierarchical vocabulary

• Object representation: A hierarchical compositional shape vocabulary
• The compositions model spatial relations among their parts

Layer 3

Layer 2

Layer 1

• Invariance to local deformations

• Exponential flexibility 
• Robustness to clutter

• Fast inference
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Inference

• Inference proceeds bottom-up

• Reduction in spatial resolution

image

learned vocabulary

‘receptive field’

indexing

matching

• Indexing and matching
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Inference

image inferred subgraphs of object hypotheses

• Takes approx. 2-4 seconds for a 
700x500 image for one class

• Takes approx. 16-20 seconds for a 
700x500 image for 15 classes
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Inference

• With a given vocabulary we infer a hierarchy of hidden states.

• Hidden states of the 1st layer  receive input from observations, states on 

other layers receive input only from the layer below.

• We denote hidden state on layer ℓ by zℓ = (ωℓ, xℓ) where ωℓ is a 

vocabulary composition and xℓ is a location in the image. 

• We assign to each hidden state zℓ, ℓ > 1, its score which is computed as

• in general,                                                     , except for repulsive parts

• D represents a deformation score function and we define it as
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Inference

• For repulsive parts we take 

• For scores on layer 1, ℓ = 1, we take “responses” from Gabor filters.

• An example: strong horizontal lines prefer composition ω1 over ω2, while 
at left endpoint of horizontal line ω2 is preferred.

ω1 ω2
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Inference graph

• In the inference process we build the inference graph G = (Z, E). 
Nodes zℓ ∈ Z are hypotheses (hidden states). Like vocabulary, G 
has also hierarchical structure and we write 

Z = Z0 ∪ Z1 ∪ … ∪ ZO .

• Computation of G is recursive. 

– Assume that hypotheses Zℓ − 1 have been computed. 

– To get Zℓ we visit each hypothesis zℓ − 1 = (ωℓ − 1, xℓ − 1) and find all 
compositions R(ωℓ − 1) having ωℓ − 1 for their reference part.

– For each composition ωℓ ∈ R(ωℓ − 1) we make a hypothesis 
zℓ = (ωℓ , xℓ), xℓ = xℓ − 1, and calculate its score.

– We perform reduction in spatial resolution, i.e., locations xℓ are down-
sampled by factor ρℓ ≤ 1, (usually we take ρℓ = 0.5).

• We bring far-away (location-wise) hidden states closer and indirectly 
(through learning) we keep scales of the Gaussians approximately the same 

over all layers (faster inference).
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Inference graph

• Computation of G, continued:

– If the score(zℓ) is greater than a threshold τℓ, then we add zℓ to Zℓ.

– we add edges from zℓ to nodes in Zℓ − 1 yielding “max” value in score 

calculation.

– Note also: At the same position xℓ we allow only one state with a 

particular composition. If we get two states z = (ωℓ, xℓ) and z = (ωℓ, xℓ) 

with ω’ℓ = ωℓ and x’ℓ = xℓ, then we keep the one with larger score. (This 

can happen due to spatial contraction.)
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Inference graph

• Support of the graph:

– Nodes which can be reached from zℓ via edges added in the inference 

process form a subgraph in G we denote by G(zℓ). 

– Layer 1 compositions of G(zℓ) are called a support of hypothesis zℓ and is 

denoted by supp(zℓ).

– Example: Graph G(z) of 3rd layer detection z of composition ω = 

z = (ω, x)

support of 

z, supp(z)
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Learning

• Bottom-up

Layer 3

Layer 2

Layer 1

le
ar

n
in

g
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Learning

• Learning the hierarchical vocabulary

– Learn the number of

compositions at each layer

– Learn the structure of

each composition

(the number of parts

and the parameters of

the distributions)

Learning of structure is unsupervised

Learning of classes is supervised
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Learning

• Learning is performed bottom-up, by 
combining simple features into 

increasingly more complex 

compositions
• Learning steps

•Learning pair-wise spatial relations

•Cluster into ‘duplet’ compositions

•Learn higher-order compositions by 
tracking frequent co-occurrences of 
duplets

• Only statistically most significant 

compositions define a certain layer

• We learn layer by layer

part:

location 
maps

central part:
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Learning

• Learning steps

‘receptive field’

→ reduce redundancy
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Learning

• Learning of the structure consists from:

1. Learning spatial correlations between parts

2. Learning compositions of parts

3. Learning the parameters

• Assumptions for learning layer ℓ > 1:
– For each training image I we have the inference graph

G = (Z1 ∪ Z2 ∪ ... ∪ Zℓ − 1, E) built up to layer ℓ − 1.
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Learning spatial correlations between parts

• We learn geometry distributions between all possible pairs of 

composiTons from layer ℓ − 1.

– Let hℓ
i,j : [−rℓ,rℓ] → ℝ be a histogram of occurrences of a composition

ωj
ℓ − 1 relative to composition ωi

ℓ − 1 (which plays a role of a reference)

– During training, hℓ
i,j is updated at  x’ℓ − 1 − xℓ − 1 for each pair of hidden 

states (zℓ − 1, z’ℓ − 1) where zℓ − 1 = (ωi
ℓ − 1, xℓ − 1) and z’ℓ − 1 = (ωj

ℓ − 1, x’ℓ − 1) 

such that:

• |xℓ − 1 − x’ℓ − 1| ≤ rℓ

• supports of zℓ − 1 and z’ℓ − 1 are “sufficiently” disjoint (overlap of their supports is 

small).

• Histograms are updated for all inference graphs of training 

images
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Learning spatial correlations between parts

• An example:

part:

histograms:

(for 7000 images, � � 8)

reference part:

0

0 1 2 3 4 5

h0,0 h0,1 h0,2 h0,3 h0,4 h0,5
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Learning spatial correlations between parts

• ‘Convergence’ of distributions

for 1 image

for 5 images

for 15 images

for 50 image

for 100 images

for 4000 images Layer 2
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Learning spatial correlations between parts

• Statistical confirmation for highly correlated parts 
in small neighborhoods (⇒ local is better)

17 x 17

25 x 25

101 x 101
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Learning spatial correlations between parts

• For each histogram, local maxima are determined 

• For each local maximum we estimate the mean μ and 

variance Σ. by fitting a Gaussian distribution around it.

histograms

loc. 
maxima

Gauss. dist.
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Learning spatial correlations between parts

• Local maxima define two-part compositions called duplets. In 

this way we “sparsify” (or “discretize”)  geometric positions 

between two compositions.

• Example 1:

– There are just two “statistically significant” positions of composition 

ω0 = −  relaTve to reference composiTon ω0 = − , i.e. there are two

duplets with reference composition ω0 and the other composition ω0.

and

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Learning spatial correlations between parts

• Notation: duplet with composition ω relative to reference 

part ωR at position i is denoted by (ωR, ω, i) 

Example 2: 

– There are four significant positions of composition ω3 = | relative to 

reference composition ω0 = −, i.e. there are four duplets with 

reference composition ω0 and the other composition ω3.

(ω0, ω3, 0) (ω0, ω3, 1) (ω0, ω3, 2) (ω0, ω3, 3)
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Learning compositions of parts

• We find a set of compositions: each composition is a set of 
frequently co-occurring duplets (two-part compositions):

1. Inference is performed on training images with all obtained 
duplets as described in the inference section.

2. For each training image neighborhood Ik we find a set of 
disjoint duplets with the same reference part ωR, 
(ωR, ωp, i1), (ωR, ωq, i1), … which best explain Ik. 

This set forms a composition with:

– reference part ωR, 

– subparts ωp, ωq, … , and 

– geometric parameters (μ, Σ) corresponding to the estimated  
Gaussians of duplets (ωR, ωp, i1), (ωR, ωq, i1), …
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Learning compositions of parts

• For each obtained composition ω we update its “count” value 

f(ω). It is taken to be the sum of its scores, i.e. each time we 

get ω, we set f(ω) = f(ω) + score (xk, ω).

• Example of the first 100 second layer compositions sorted by 

decreasing value of f:

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Object layer learning

• For learning the last, object layer, we use a similar approach as 

for lower layers, but additionally:

– For each training image (receptive field) we produce many (redundant) 

compositions with different number of subparts and different 

combinations of subparts.

– We validate these compositions on validation image set and keep only 

those which have good performance: low false negative/false positive 

ratio.
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Learning compositions of parts

• On higher layers we can easily get an “explosion” of parts due to 

many possible combinations of compositions.

• Example: For the set of “circles” we obtain the following 3rd

layer:
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Learning compositions of parts

• To reduce the number of parts we:

– Merge similar compositions and giving them the same label (adding 

“OR” nodes to the vocabulary)

– Reduce redundancy by selecting a subset of all (merged) compositions 

which already describe the training set sufficiently well (e.g., in this 

way we remove parts modelling texture).

OR node
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Merging compositions of parts

• Example: Distances between layer 3 compositions.

(White color:

distance = 0)
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Reducing the set of compositions

• Further, we select only a subset of compositions which approximately 

maintains the description power of the full set.
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Reducing the set of compositions

• Formally, we set the following optimization problem:

– We have vocabulary built up to layer ℓ, and Ω0
ℓ is (current) set of 

compositions on layer ℓ.

– For image Ik define  

which measures how well image Ik is covered, relative to the covering 

with layer ℓ − 1, if on layer ℓ we only take composiTons Ω ⊆ Ωℓ.
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Learning thresholds

• Detections of compositions in the inference process are 

accepted if their scores are above a threshold.

• Thresholds are determined for each particular composition and 

are based on the performance of the object layer detections.

• For each object layer composition we learn a 2-class SVM

classifier which accepts or rejects a detection: 

– For each detection zO = (xO, ωO) we make a vector composed of its score 

and scores of its subpart detections z1
O − 1,…, zP

O − 1 :

(score(zO − 1), score(z1
O − 1), …, score(zP

O − 1))

– SVM classifier is trained on the vectors obtained from true positive and 

false positive detections on validation images.
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Learning thresholds

• On other layers we learn the thresholds in a way that nothing is 

lost with respect to the accuracy of object detection while at 

the same time optimizing for the efficiency of inference.

• For each composition ωℓ we find the smallest score it produces 

in any of the parse graphs of positive object detections over all 

train images Ik. Threshold for its score is then:
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Shape consistency and deformations

• Due to spatial deformations we allow for each subpart 

(Gaussian “distributions” (μp, Σp)), the support shape of 

detections on higher layers (5) and particularly on object layer 

can significantly deviate from the shape that composition 

represented during the learning phase.

• For example, if we “sample” subparts of each composition 

representing an apple according to (μp, Σp) recursively, we get:
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Shape consistency and deformations

• Therefore we keep track of average shapes (= average 

supports) of compositions obtained in the learning process. 

• In the inference process we calculate distance of the inferred 

shape to the learned average shape and use it as an additional 

“score” which can be used to accept or reject an object layer 

detection. 

• We add this shape consistency score to the vector of the SVM

classifier.
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Summary: Compositional shape hierarchy

• A Computational Model for Learning a Multi-Level Compositional 

Representation of Visual Structure

– Computational plausibility 

• Hierarchical representation

• Compositionality (parts composed of parts)

• Indexing & matching recognition scheme

– Statistics driven learning (unsupervised 
learning)

– Fast, incremental (continuous) learning Layer 1

Layer 2

Layer 3
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Experimental results

• Learning a vocabulary from:

– a set of natural images

– a set of “Gaussian noise” images

– a set of “letters” images

• starting from

– a set of oriented edges

– a set of polarity edges

– DOG / on-off cells

• Multi-class object detection

• Share-ability, transfer of knowledge, incremental learning

• Scalability -> Taxonomy of object categories
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Natural images, edge filters

Layer 1

Layer 2

Layer 3
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Natural images, polarity filters

Layer 1

Layer 2

Layer 3
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Natural images, DoG filters

Layer 1

Layer 2

Layer 3
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Natural images, edge filters

Natural objects

Letters

Gaussian noise
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Natural images, edge filters
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Randomly perturbed polarity of parts 

?

?
SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Histogram of Compositions

• lHop learns structures that are statistically-relevant 
for object description.

• lHop can be used as a learned filter for detection of 
edge-like structures if considering only the lower 
layers.

• We analized the discriminative power of lower-
layers by constructing a HOG-like descriptor from 
the lower-layer responses.

• We constructed a new descriptor based on 
histogramming spatial responses from the lHop: 
The Histogram of Compositions – HoC

69
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Histogram of Compositions

70

• Use a preset library of parts.

• Each part contributes to
all cells proportionally to the 
distance from the cell center.

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Histogram of Compositions

• We used 100 random images with clear edge 
structures to learn the library:

• The resulting library of parts:

71

Layer 1 Layer 2 Layer 3
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Experiment with HoC

• Studied discriminative performance with respect to 
the used layer

• Caltech 101 dataset:

• Classify descriptors HoC:
– HoC computed over entire image

– A SVM (one-aginst-one) classifier

– Chi-squared distance within an RBF kernel

• Compared to HOG
– SVM (one-against-one)

– Chi-squared distance within an RBF kernel
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Experiment with HoC

73

Observations:

• HoC with layer 2+3 outperforms HoC that uses either layer 2 
or layer 3.

• HoC outperforms the HOG already at layer 2.
• HoC + HOG improves performance for all layer combination.

• HoC appears to be complementary to HoG.
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Multi-class learning and detection

• Learning a vocabulary from simple Gabor feature to whole-
object class shapes

• Learning a representation of 15 object categories (cup, 
mug, bottle, cow, giraffe, swan, horse, person, face 

car_front, car_rear, car_side, motorbike, bicycle, apple 
logo)

• Learning of the first 3 layers on natural images (or jointly 
on images of all classes), while learning the higher layers 

incrementally (one class after another)
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Multi-class learning and detection

• Learned vocabulary
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Multi-class learning and detection

• Examples of learned whole-object shape models

giraffe

bottle

bicycle
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Detection

Inference proceeds bottom-up. Active parts can easily be “traced” down to the image.
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Object detection and recognition

- intra-class 
variability

• Invariance
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Object detection and recognition

• Invariance

- scale

- real / hand
drawn
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Detection of multiple object classes
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Detection of multiple object classes
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Detection of object classes, cups

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012 93

Detection
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• Size of the vocabulary as a function of the 
number of learned class

Size of the vocabulary

• Sublinear scaling
• Scales better than 

Opelt et al.
• Only 1.6Mb to store a  

15-class vocabulary 
on disk
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• Inference time (average per image) as a function 
of the number of learned class

Inference time

• Only 16 seconds per 
image (approx. 
500x700) for 15-class 
object detection

Hardware information:
• Intel Xeon-4 CPU 2:66 

Ghz computer (one 
core used)

• implemented in C++
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Sharing of features
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• Sharing of features between classes
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Sharing of features
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Multi-class learning strategies

• We evaluate 3 different strategies for learning a hierarchical 

multi-class object vocabulary for object detection: 

– independent

– joint

– sequential training

• We show that sequential learning of object classes attains 

the best tradeoff between the complexity of learning and 

detection and the accuracy of performance
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Multi-class learning strategies

• Feature sharing among similar and dissimilar classes

– Joint achieves the best sharing of features. Sequential is comparable.

– Sharing is also present for visually dissimilar objects (lower layers)

Ind. Joint Seq. 1 Seq. 2

Joint Seq
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Multi-class learning strategies

• Test classes (10)

– TUD shape dataset: cup, fork, hammer, knife, mug, pan, pliers, 

pot, saucepan,  scissors

cup fork hammer knife

mug pan pliers pot

saucepan scissors
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Multi-class learning strategies

• Learned vocabulary (examples)

Layer 2

Layer 3

Layer 4 Layer 5

Layer 6

Layer 1 (fixed)

bottle cup hammer mug pliers saucepan scissors

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012 103

Sharing of features
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Multi-class learning strategies

• Growth of the representation

– Both joint and sequential training are sublinear (more evidently so in 

the lower layers of the hierarchy)

– In sequential training, the representation 

grows only slightly faster than in joint 

– Both jointly and sequentially learned

representations grows significantly 

slower than the flat representation of

Opelt, Pinz & Zisserman, IJCV, 2008.
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Transfer of features

• Transfer of features in incremental learning
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Multi-class learning strategies

• Complexity of learning and inference

– Due to re-use of features, sequential training runs faster when 

learning each novel class (up to a constant time)

– Inference time is best for joint, but only slightly worse for 

sequential training
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Deformations and articulations

• Ability of a composition to allow for deformations is desirable 

and crucial for the robustness of the algorithm. To some extent 

we are able to code the variations due to spatial deformation 

parameters (μ, Σ), but we can go further.

• The idea is to “OR” those compositions which represent some 

functional parts (e.g. legs of cows, necks of swans, etc.)

• We choose to do such functional OR-ing based on global 

matching of train images (we could also use correspondences 

given by motion, ...).
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Shape consistency and deformations

Two compositions are matched, if the global matching maps supports 

of the two compositions one to another (significant portion of them).

• Example: putting two compositions (blue and yellow) representing 

a leg into correspondence by global matching of two cows.
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Transfer of deformations 

• Transfer of deformations to novel classes:

– Example: transfer of variation of cow parts to one horse training 

image 

+

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Adding discriminative power to lHOP

• Part sharing causes problems when differentiating 
between:
– Visually-similar categories

– Category and a visually-similar structure on the background

• Observation: 
– Visually-similar categories share many parts

– Visually-similar categories differ in a small subset of parts

118

(reproduced from:Fidler et al., NIPS2009)

Cow-specific part

Horse-specific part

Shared part
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Adding discriminative power

• Goal: Identify the subset of discriminative nodes to
improve discrimination
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Hypotheses rescoring

• Experiment: Discrimination between category and similar 
„background“ structures (Lhop hypotheses rescoring).

• ETHZ dataset with 5 categories:

• Standard setup:
– Half images of category for training and half + images of remaining 

categories for testing, (5 random splits).

• LHop trained from training images:
– Hierarchy with 7 layers.

– Average vocabulary consisted of 525 parts.

• dLHop trained from lHop detections on training images:
– Lhop detections on five scales.

– Detections that overlaped with GT by at least 40% taken as positive 
examples, other as negative (background).

– On average 9 nodes per category automatically selected (~17% of all 
nodes).

130
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Hypotheses rescoring: Example

132

• Parts selected from various layers.

• Most parts appear from between layers 3 and 5

• Global, distinctive features selected

Presence increases probability of category

Presence decreases probability of category

Part not selected by discriminative node
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Summary and discussion

• Computational principles towards modeling a large number of 

object classes

– Hierarchical compositionality of object structure

• Scaling in terms of memory, speed-up of inference for multiple 

object classes, efficient learning

• General insights
– Modeling/memorizing large-scale spatial-temporal patterns

• Other modalities

• Other senses

• Sensing as a “controlled hallucination” (Koenderink)
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Work in progress

Parts of appropriate granularity to accomplish different
tasks of a cognitive system

– towards a higher number

of object classes

– relate parts to 3D concepts

– relate parts to affordances, 

– relate (3D) parts to grasping modes,

– relate parts to actions,

– relate (semantic) parts to words,

– add additional modalities (color, 

texture, motion, 3D),

– attention, context

– hierarchical compositionality for

sound, music, speech, touch,  

– relations to biology RobotCub Consortium
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Thank you
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