

Outline

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

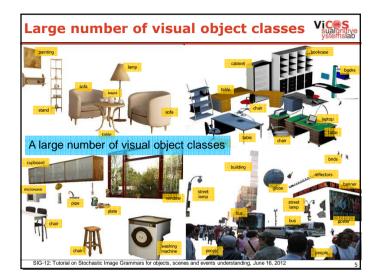
• Motivation (large number of object categories)

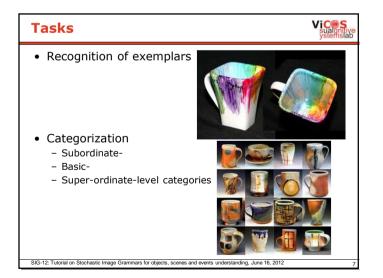
Vices sualgnu

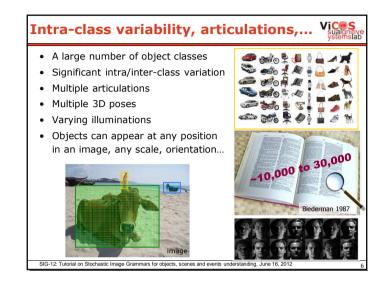
- Requirements
- Representation (And-Or Graphs)
- Inference
- Learning
- Experiments (Videos)
- Extensions
 - Flexible object structure
 - Adding discriminative information

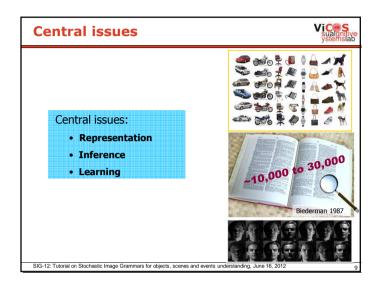
SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

Conclusions





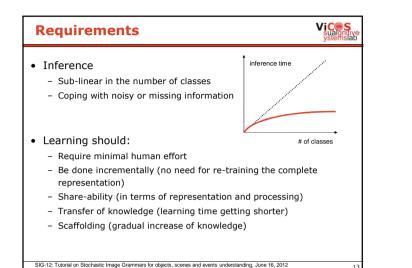




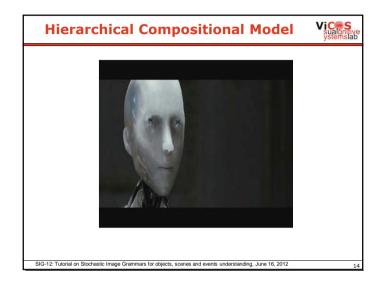
Evolu	ition of	object m	odels		Vices sualgnifiv ystemsiac
		n of object categorization sion Perspectives, Cambrid]
Categorical Model	0s 1980 3D categorical shape models, abstract volumetric parts)s 1990)s 2000	0s 2010s	
¥ A-	low-le	ing the ga evel imag evel abst ing incre	e feature ract mod	es and	•
		•	•••	nce	
	comp	lex mode	IS		
Input Image			Complex textured objects	Complex textured objects, clutter, occlusion	
	Binford'71, Nevatia'77, Marr'78, Biederman'85, Pentland'86,	Grimson'84, Lowe'87, Huttenlocher'90	Turk'91, Murase'95, Nayar'95, Black'98	Schmid'97, Lowe'99, Lazebnik'05, Ferrari'06, Fergus''07	
SIG-12: Tutorial	on Stochastic Image Gra	mmars for objects, scenes	and events understanding	ıg, June 16, 2012	

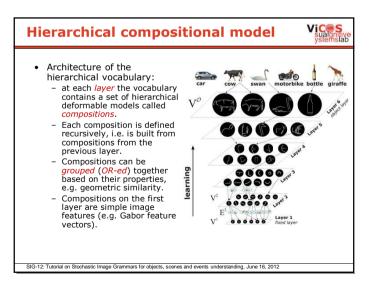


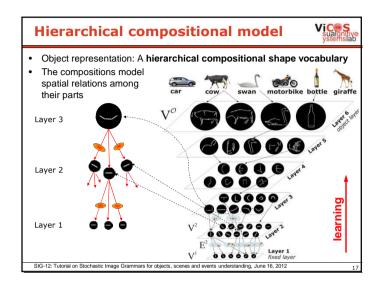
• Rep	presentations and learning: the key issu	es
• Obj	ject categorization (2D shape)	
• Red	quirements:	
- A	A representation should:	
	 Support a variety of tasks 	
	Enable fast and robust object detection/segmentation/page	5
	Scale with the number of classes (modest increase in me	emory)
	Accommodate exponential variability of objects	
	Enable efficient learning	

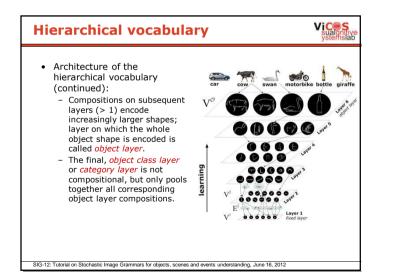


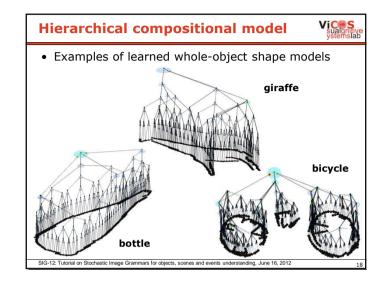
_		
	Related work	ices sualgnitive ystemslab
•	 Hierarchical representations Fukushima, Sarkar & Boyer, Riesenhuber & Serre & Poggio (HMAX), Mutch & Lowe, Lecur (convolutional nets), Armik & D. Geman, S. Geman, Torralba, Borenstein & Epstein & Ullima Plater, Bouchard & Triggs, Ahuja & Todorovic, S.C. Zhu & Mumford, L. Zhu & Yulle, Hintor 	n, Scalzo &
•	Compositionality	
	 S. Geman & Bienenstock, Amit & D. Geman, Dickinson, Ettinger, S.C. Zhu & Mumford, Yuil Todorovic & Ahuja, Ullman et al., Felzenswalb 	le et al.,
•	Unsupervised learning	
	 Utans, Serre & Riesenhuber & Poggio, Scalzo & Piater, Lecun, Hinton, Ommer & Buhmann al. 	n, Yuille et
•	Incremental learning	
	- Hinton, Krempp & Amit & Geman, Opelt & Pinz & Zisserman, Fei Fei & Fergus & Perona	
	unsupervised learning of hierarchical compositional shape hierarch	y

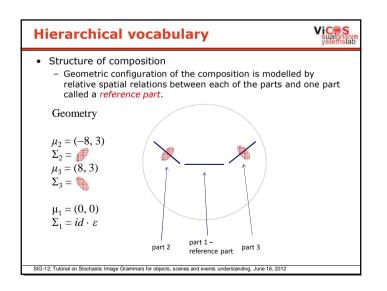








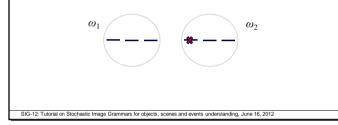


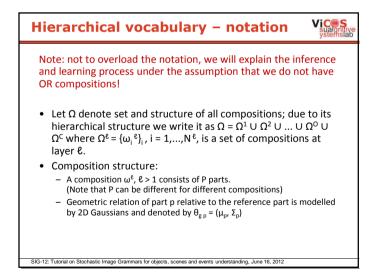


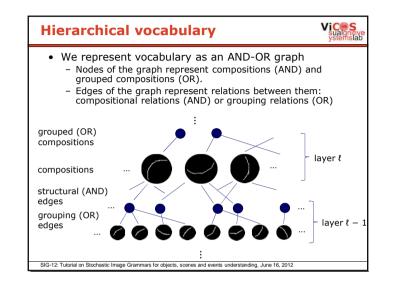
- Structure of composition
 - Geometric configuration of the composition is modelled by relative spatial relations between each of the parts and one part called a *reference part*.

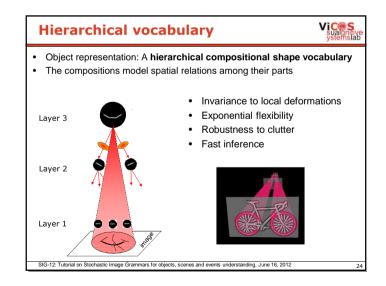
ViCe

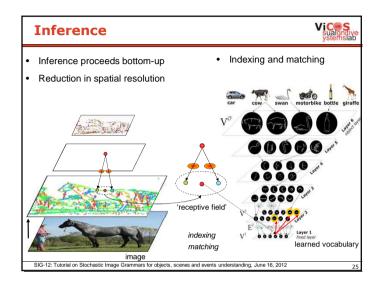
 We allow for *repulsive* (or "forbidden") parts. These are the parts that the composition cannot consist of. We need them to deal with compositions that are supersets of one another.











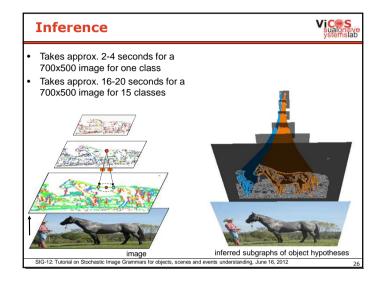
Inference	VICES sualentive ystemslab

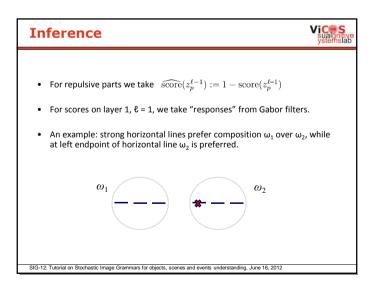
- With a given vocabulary we infer a hierarchy of *hidden states*.
- Hidden states of the 1st layer receive input from observations, states on other layers receive input only from the layer below.
- We denote hidden state on layer ℓ by z^ℓ = (ω^ℓ, x^ℓ) where ω^ℓ is a vocabulary composition and x^ℓ is a location in the image.
- We assign to each hidden state z^{ℓ} , $\ell > 1$, its *score* which is computed as

$$\operatorname{score}(z^{\ell}) = \prod_{p=1}^{P(\omega^{\ell})} \max_{z_{p-1}^{\ell}} \left(\widehat{\operatorname{score}}(z_{p}^{\ell-1}) \cdot D(x_{j}^{\ell-1} - x^{\ell} \mid \mu_{j}^{\ell}, \Sigma_{j}^{\ell}) \right)$$

- in general, $\ \widehat{\operatorname{score}}(z_p^{\ell-1}):=\operatorname{score}(z_p^{\ell-1})$, except for repulsive parts
- D represents a deformation score function and we define it as

 $D(x \mid \mu, \Sigma) = \exp\left(-0.5 \cdot (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$





Vices sualgnu

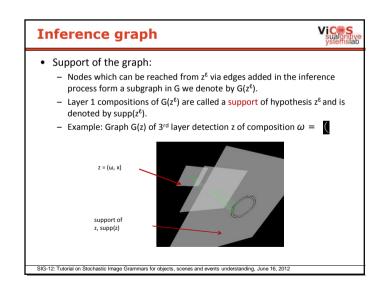
In the inference process we build the inference graph G = (Z, E).
 Nodes z^e ∈ Z are hypotheses (hidden states). Like vocabulary, G has also hierarchical structure and we write

 $\mathsf{Z}=\mathsf{Z}^0\cup\mathsf{Z}^1\cup\,...\,\cup\,\mathsf{Z}^0\;.$

- Computation of G is recursive.
 - Assume that hypotheses Z^{e-1} have been computed.

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

- To get Z^ℓ we visit each hypothesis z^{ℓ-1} = ($\omega^{ℓ-1}$, x^{ℓ-1}) and find all compositions R($\omega^{ℓ-1}$) having $\omega^{ℓ-1}$ for their reference part.
- For each composition $\omega^{e} \in R(\omega^{e-1})$ we make a hypothesis $z^{e} = (\omega^{e}, x^{e}), x^{e} = x^{e-1}$, and calculate its score.
- We perform reduction in spatial resolution, i.e., locations x^e are down-sampled by factor $\rho^e \le 1$, (usually we take $\rho^e = 0.5$).
 - We bring far-away (location-wise) hidden states closer and indirectly (through learning) we keep scales of the Gaussians approximately the same over all layers (faster inference).



Inference graph

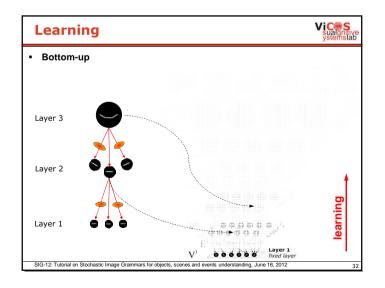
- Computation of G, continued:
 - If the score(z^{\ell}) is greater than a threshold $\tau^{\ell},$ then we add z^{ℓ} to $Z^{\ell}.$

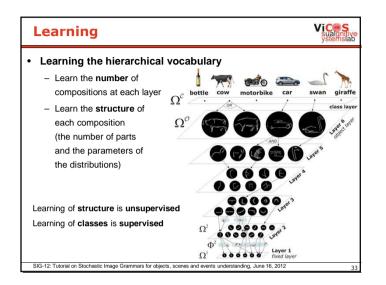
Vices

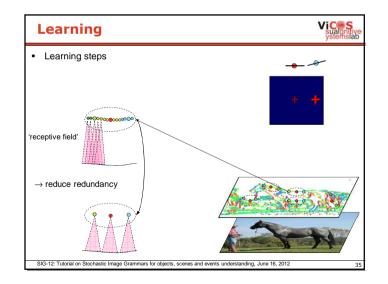
– we add edges from z^ℓ to nodes in $Z^{\ell-1}$ yielding "max" value in score calculation.

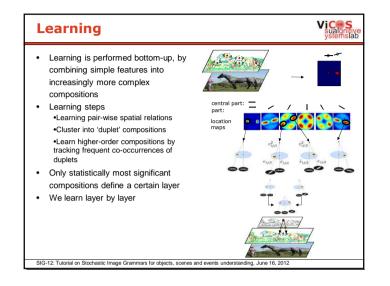
$$\operatorname{score}(z^{\ell}) = \prod_{p=1}^{P(\omega^{\ell})} \max_{z_{p}^{\ell-1}} \left(\widehat{\operatorname{score}}(z_{p}^{\ell-1}) \cdot D(x_{j}^{\ell-1} - x^{\ell} \mid \mu_{j}^{\ell}, \Sigma_{j}^{\ell}) \right)$$

- Note also: At the same position x^{ℓ} we allow only one state with a particular composition. If we get two states $z = (\omega^{\ell}, x^{\ell})$ and $z = (\omega^{\ell}, x^{\ell})$ with $\omega'^{\ell} = \omega^{\ell}$ and $x'^{\ell} = x^{\ell}$, then we keep the one with larger score. (This can happen due to spatial contraction.)

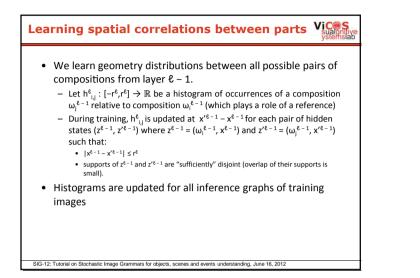




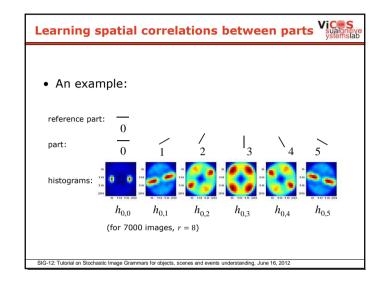


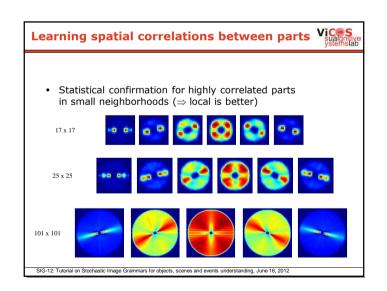


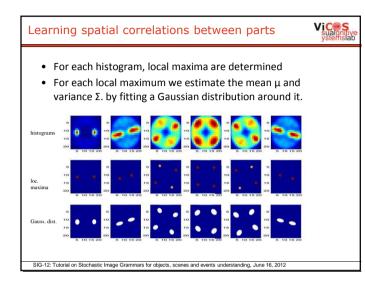
Lear	ning	Vices sualgnitive ystemslab
• Lea	rning of the structure consists from:	
1.	Learning spatial correlations between parts	
2.	Learning compositions of parts	
3.	Learning the parameters	
- I	Sumptions for learning layer $l > 1$: For each training image I we have the inference grap $S = (Z^1 \cup Z^2 \cup \cup Z^{l-1}, E)$ built up to layer $l - 1$.	bh

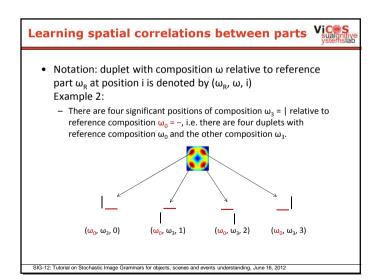


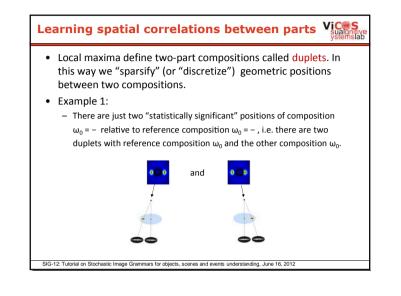
Learning spatia	l corre	lations	betw	/een	parts	Vices suaignifive ystemsiab
'Convergence'	of distribu	utions				
for 1 image	• • •	2 0	3	13	•	
for 5 images	•• •• •	•	\bigcirc	3	• •	
for 15 images	•• •• •	- 😂	\odot	•	• •	
for 50 image	HO OH O	• 📀	\odot	0	• •	
for 100 images		॰ 😂	0	\odot	• •	
for 4000 images	•• •• •	• 😂	\odot	۰	• •	Layer 2
SIG-12: Tutorial on Stochastic Image G	rammars for object	s, scenes and even	ts understand	ing, June 16	, 2012	

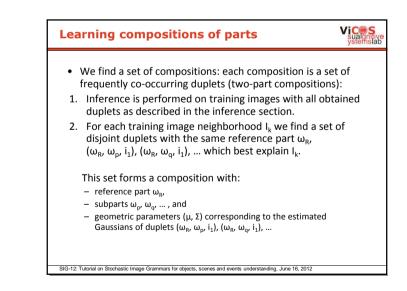


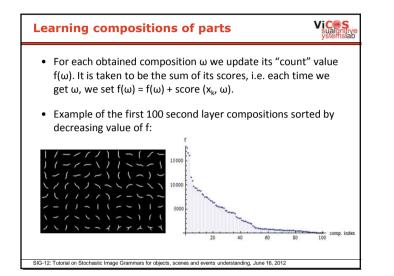




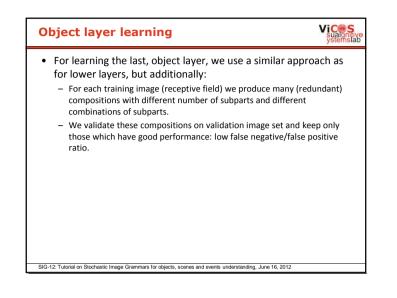


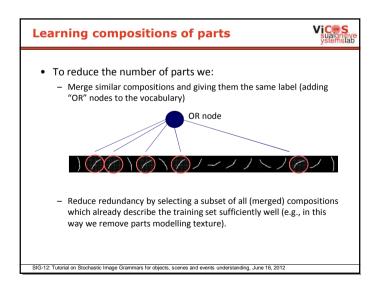


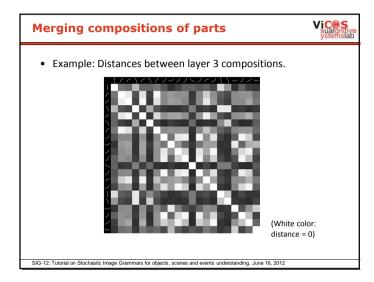


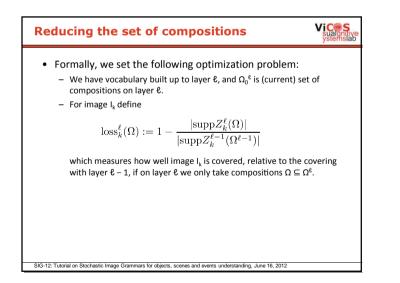


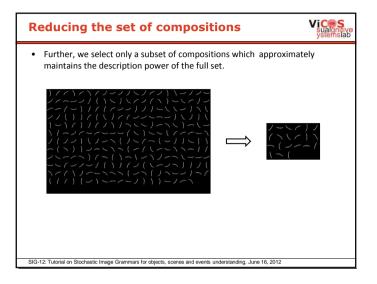
 On higher layers we can easily get an "explosion" of parts due to many possible combinations of compositions. Example: For the set of "circles" we obtain the following 3rd layer: 	Learning compositions of parts	Vices sualgnitive ystemslab
$ \begin{array}{c} \hline \\ \hline $	many possible combinations of compositions.Example: For the set of "circles" we obtain the following	
	$ \bigcirc \bigcirc$	、ノントノー、 - ノノー、 - (- ノ) - ノー、 - ノー、 - (- ノ) - (-)











 Detections of compositions in the inference process are accepted if their scores are above a threshold. Thresholds are determined for each particular composition and are based on the performance of the object layer detections. For each object layer composition we learn a 2-class SVM classifier which accepts or rejects a detection: For each detection z^o = (x⁰, ω⁰) we make a vector composed of its score and scores of its subpart detections z₁⁰⁻¹,, z_p⁰⁻¹: (score(z⁰⁻¹), score(z₁⁰⁻¹),, score(z_p⁰⁻¹)) SVM classifier is trained on the vectors obtained from true positive and false positive detections on validation images. 	Learning thresholds Vic	S algnitive emslab
	 accepted if their scores are above a threshold. Thresholds are determined for each particular composition ar are based on the performance of the object layer detections. For each object layer composition we learn a 2-class SVM classifier which accepts or rejects a detection: For each detection z⁰ = (x⁰, ω⁰) we make a vector composed of its score and scores of its subpart detections z₁⁰⁻¹,, z_{p⁰⁻¹}: (score(z⁰⁻¹), score(z₁⁰⁻¹),, score(z_{p⁰⁻¹}))) SVM classifier is trained on the vectors obtained from true positive an 	ore

Learning thresholds

Vices sualgnifi

- On other layers we learn the thresholds in a way that nothing is lost with respect to the accuracy of object detection while at the same time optimizing for the efficiency of inference.
- For each composition ω^{e} we find the smallest score it produces in any of the parse graphs of positive object detections over all train images I_{k} . Threshold for its score is then:

 $\tau_{\omega^{\ell}} = \min_{k} \min_{(\omega^{\ell}, x^{\ell}) \in \mathcal{T}_{L}(z^{\mathcal{O}})} \operatorname{score}(\omega^{\ell}, x^{\ell})$

SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

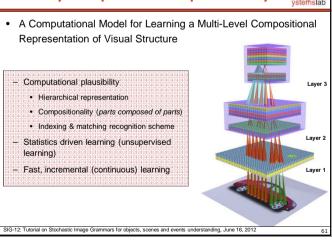
SIG-12: Tutorial on Stochastic Image Grammars for objects, scenes and events understanding, June 16, 2012

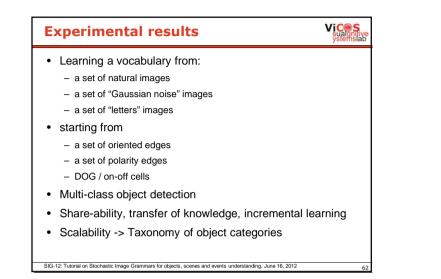
Shape consistency and deformations Therefore we keep track of average shapes (= average supports) of compositions obtained in the learning process. In the inference process we calculate distance of the inferred shape to the learned average shape and use it as an additional "score" which can be used to accept or reject an object layer detection. We add this shape consistency score to the vector of the SVM classifier.

Due to spatial deformations we allow for each subpart (Gaussian "distributions" (μ_p, Σ_p)), the support shape of detections on higher layers (5) and particularly on object layer can significantly **deviate** from the shape that composition represented during the learning phase. For example, if we "sample" subparts of each composition representing an apple according to (μ_p, Σ_p) recursively, we get:

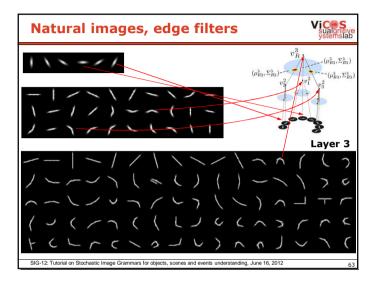
Shape consistency and deformations

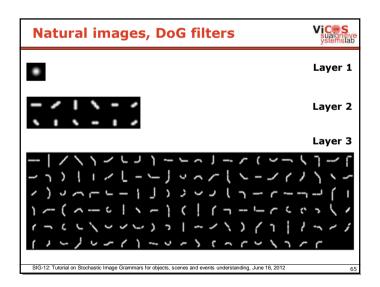
Vices



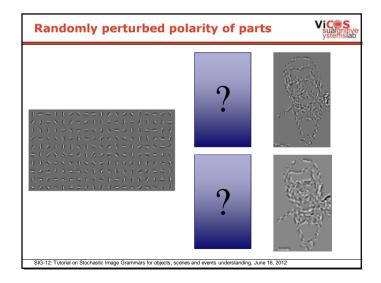


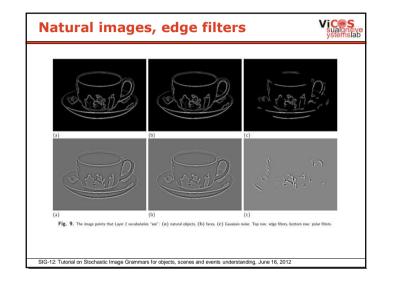
Natural images, polarity filters	Vices sualgnitive ystemslab
+ / + × / ×	Layer 1
	Layer 2
, , , , , , , , , , , , , , , , , , , ,	Layer 3
ヽ / ヽ / / / ヽ ヽ \ (/ ~ ヽ ヽ ') / ¬ - / ヽ \ (] / \ - ヽ > ¬ N /] / - J J > r - J \ / J + - ' > / - ヽ ¬ ¬ ^ J > \ N \ N \ / / / ~ - n - × ¬ ¬ - L + ~ r J < \ ∧ \ r - ¬)	

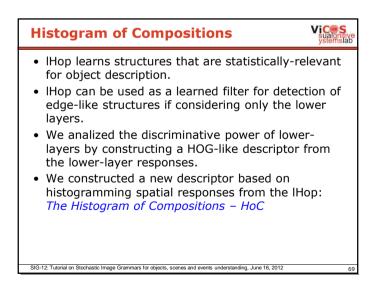


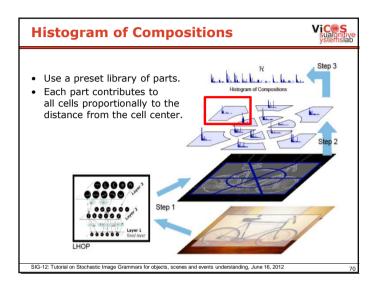


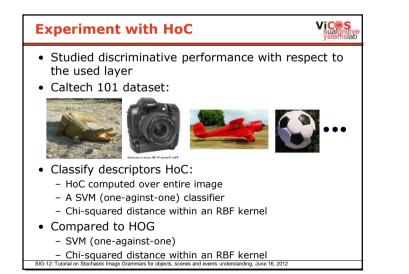
Natural images, edge filters	Vices suaignitive ystemsiab
	Natural objects Letters
$ \begin{array}{c} \bullet \bullet$	Gaussian noise

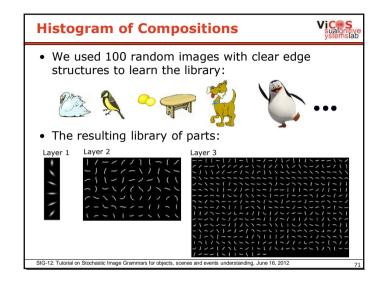


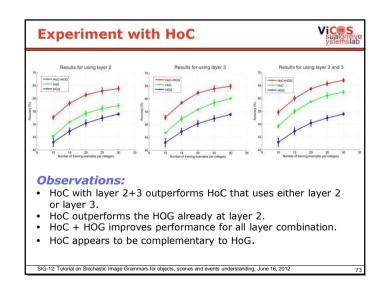






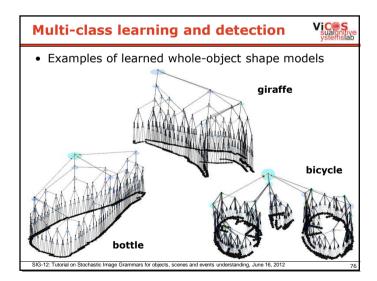


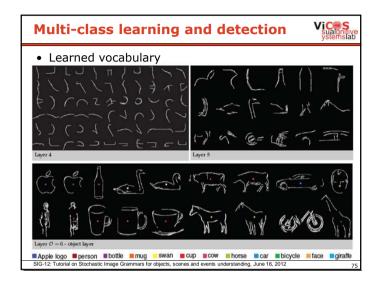


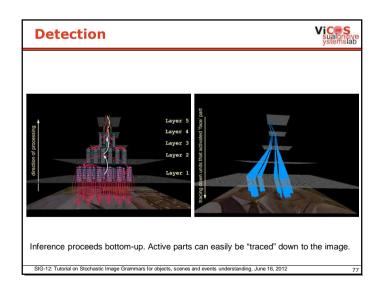


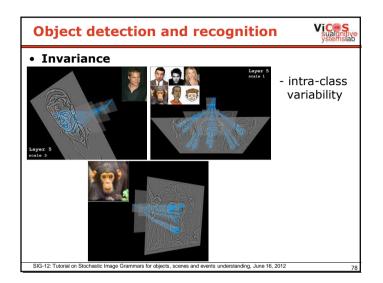
Multi-class learning and detection

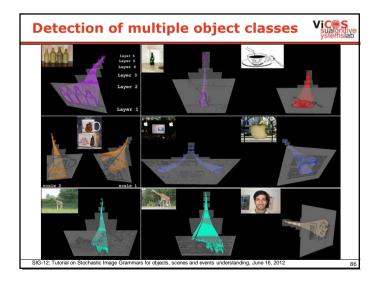
- Learning a vocabulary from simple Gabor feature to wholeobject class shapes
- Learning a representation of 15 object categories (cup, mug, bottle, cow, giraffe, swan, horse, person, face car_front, car_rear, car_side, motorbike, bicycle, apple logo)
- Learning of the first 3 layers on natural images (or jointly on images of all classes), while learning the higher layers *incrementally* (one class after another)

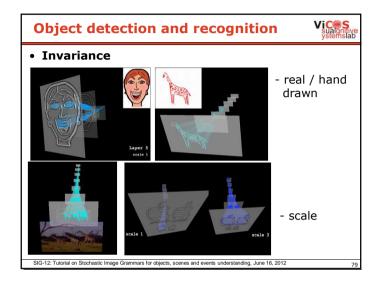


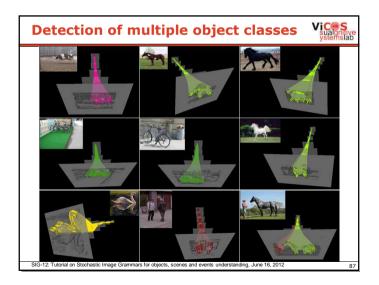


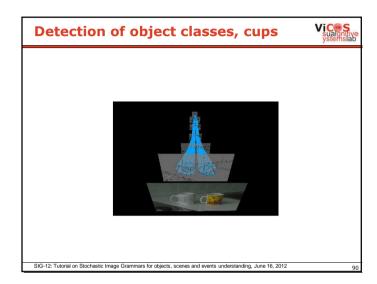


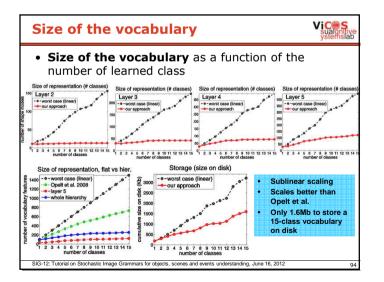




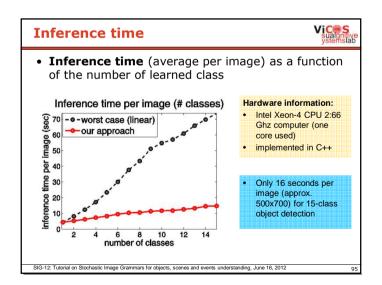


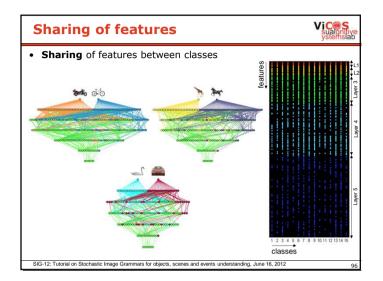


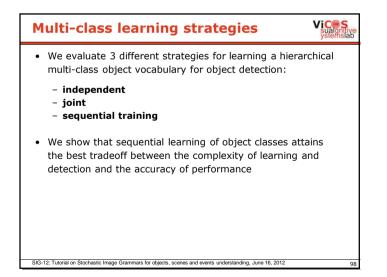


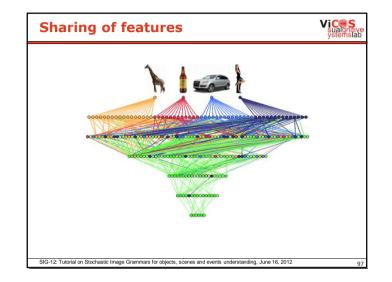


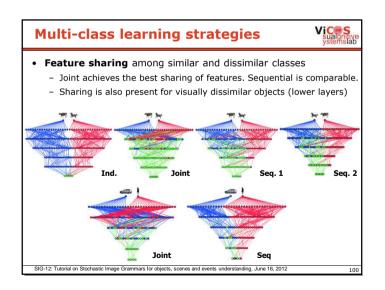
on								
ne deteo plits trai	ction-ra	ate (i data		4 FPF e othe	Pl aver er data	aged ove asets the	r fiv	es we repo ve random ults are
	class		56		57	ou	r apr	proach
	apple	logo	83.2 (1.7		.9 (4.5)			0.32 FPPI
	bottle	0	83.2 (7.5		5.8 (6.1)	86.2 (2		0.36 FPPI
ETH	giraft	e	58.6 (14.6		0.5 (5.4)			0.21 FPPI
shape	mug	-	83.6 (8.6		2.7 (5.1)	84.6 (2		0.27 FPPI
	swan		75.4 (13.4) 84	1.0(8.4)			0.26 FPPI
	avera	ge	76.	8	84.8		3.7	0.28 FPPI
INRIA	horse	-	84.8(2.6		1	85.1(2	2)	0.37 FPPI
	class				related		01	ir approach
UIUC			, multiscale		6 [29]	93.5 [52]		93.5
Weizma	Weizmann hors		nultiscale	89	0.0 [4]	93.0 [58]		94.3
TUD	m	otorbi	ke		87 [6]	88 [33]		83.2
		cl	155	[3]	[4]	our appr	oach	
		fa	50	96.4	97.2		94	
			ycle_side	72	67.9		68.5	5
		bo	ttle	91	90.6		89.1	
		co	w	100	98.5		96.9	
		cu		81.2	85		85	
	GRAZ		r_front	90 97.7	70.6		76.5	
			horse_side		98.2		97.5	
					93.7	93.7		
			otorbike	95.6	99.7		93.0	
			ug	93.3	90 52.4		90	
			rson	52.6			60.4	



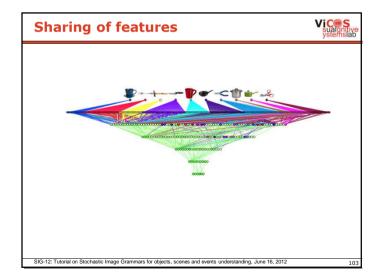


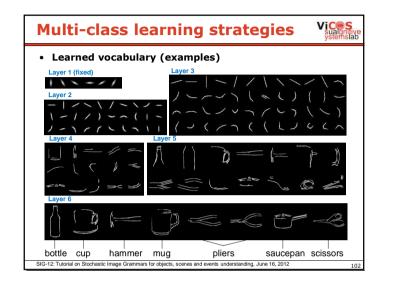


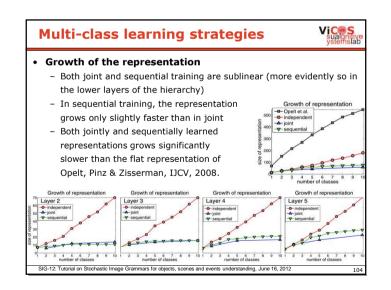


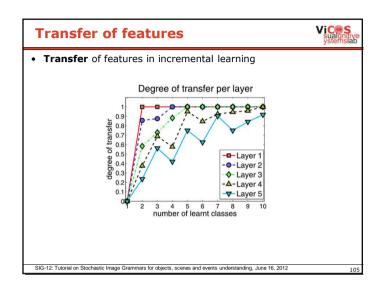












Deformations and articulations

Vices sualgnitive

- Ability of a composition to allow for deformations is desirable and crucial for the robustness of the algorithm. To some extent we are able to code the variations due to spatial deformation parameters (μ , Σ), but we can go further.
- The idea is to "OR" those compositions which represent some functional parts (e.g. legs of cows, necks of swans, etc.)
- We choose to do such functional OR-ing based on global matching of train images (we could also use correspondences given by motion, ...).

