## Inference of SIG

Song-Chun Zhu, Sinisa Todorovic, and Ales Leonardis
At CVPR, Providence, Rhode Island
June 16, 2012

## Typical parsing algorithms in the NLP literature

1. Pure bottom-up:
2. Pure top-down:
3. Recursive/iterative:
4. Heuristic:

CYK - chart parsing, 1960s
(Cocke, Younger, Kasami)
Earley-parser, 1970s
(Earley, Stockle)

Inside-outside algorithm, 1980s (Baker, Lori, Young)

Best-first Chart Parsing, 2000s
(Chaniak, Johnson, Klein, Manning)

## Dynamic Programming (DP)

- Definition: Solve an optimization problem by partitioning it into (simpler) subproblems, and re-use solutions of the subproblems (memoization), rather than re-computing them.
- Applications:
- DP is a major paradigm in solving optimization problems
- Viterbi algorithm (e.g., for hidden Markov models)
- Cocke-Younger-Kasami (CYK) algorithm
- Earley algorithm (a type of chart parser)
- Value Iteration (e.g., for Markov decision process)
- ...


## Four Steps in Developing a DP Algorithm

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute this value in a bottom-up fashion
- 4. Find an optimal solution from computed information


## DP for a Chain Model -- The Viterbi algorithm for HMM

- The goal: Find the most likely sequence of hidden states that produces the sequence of observed events



## Hidden Markov Model (HMM)

- State space: $S=\left(S_{1}, \ldots, S_{N}\right), N$ states
- Distinct observation symbols: $V=\left(v_{1}, \ldots, v_{M}\right), M$ symbols
- Observation sequence: $\left\{X_{1}, X_{2}, \ldots, X_{t}, \ldots\right\}, X_{t} \in V$
- Hidden state sequence: $\left\{Y_{1}, Y_{2}, \ldots, Y_{t}, \ldots\right\}, Y_{t} \in S$
- State transition matrix: $A=\left(a_{i j}\right)_{N \times N}$,

$$
a_{i j}=p\left(Y_{t+1}=S_{j} \mid Y_{t}=S_{i}\right), \quad 1 \leq i, j \leq N
$$

- Emission probability in state $S_{j}: B=\left(b_{j}(k)\right)$,

$$
b_{j}(k)=p\left(X_{t}=v_{k} \mid Y_{t}=S_{j}\right), \quad 1 \leq j \leq N, \quad 1 \leq k \leq M
$$

## Hidden Markov Model (HMM)

- The prior initial state distribution: $\Pi_{1}=\left(\pi_{11}, \pi_{12}, \ldots, \pi_{1 N}\right)$

$$
\pi_{1 j}=p\left(Y_{1}=S_{j}\right), \quad 1 \leq j \leq N
$$

- Joint probability:

$$
\begin{aligned}
p\left(X_{1}, \ldots, X_{n}\right. & \left., Y_{1}, \ldots, Y_{n} ; A, B, \Pi_{1}\right) \\
& =p\left(Y_{1}\right) p\left(X_{1} \mid Y_{1}\right) \prod_{t=2}^{n} p\left(Y_{t} \mid Y_{t-1}\right) p\left(X_{t} \mid Y_{t}\right)
\end{aligned}
$$

## Three Basic Problems in HMM

Hidden states
$\mathbb{Y}=\left[Y_{1}, \ldots, Y_{n}\right]$

Observations
$\mathbb{X}=\left[X_{1}, \ldots, X_{n}\right]$

Model parameters
$\Theta=\left(A, B, \Pi_{1}\right)$

- Problem I: Given $\mathbb{X}$ and $\Theta$, how to predict $\mathbb{Y}$ ? (i.e. Inference)

$$
\mathbb{Y}^{*}=\arg \max _{\mathbb{Y} \in \Omega} p(\mathbb{Y} \mid \mathbb{X} ; \Theta)=\arg \max _{\mathbb{Y} \in \Omega} p(\mathbb{Y}, \mathbb{X} ; \Theta)
$$

where $\Omega$ is the solution space and $|\Omega|=N^{n}$

- Problem II: Given $\mathbb{X}$, how to compute the likelihood of model parameters,

$$
p(\mathbb{X} ; \Theta)=\text { ? } \quad \text { (i.e. Membership) }
$$

- Problem III: How to estimate $\Theta$ based on $\mathbb{X}$ ? (i.e. Learning)

$$
\widehat{\Theta}_{M L E}=\arg \max _{\Theta} p(\mathbb{X} ; \Theta)
$$

## The Viterbi Algorithm for Solving Problem I

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute this value in a bottom-up fashion
- 4. Construct an optimal solution from computed information


## The Viterbi Algorithm for Solving Problem I

- 1. Characterize the structure of an optimal solution

$$
p^{*}=\max _{\mathbb{Y}} p(\mathbb{X}, \mathbb{Y} ; \Theta) \quad \text { and } \quad \mathbb{Y}^{*}=\arg \max _{\mathbb{Y}} p(\mathbb{X}, \mathbb{Y} ; \Theta)
$$

- 2. Recursively define the value of an optimal solution

$$
\text { Denote } \mathbb{Y}_{t}=\left[Y_{1}, \ldots, Y_{t}\right] \quad \text { and } \quad \mathbb{X}_{t}=\left[X_{1}, \ldots, X_{t}\right]
$$

Define

$$
\delta_{t}(i)=\max _{\mathbb{Y}_{t-1}} p\left(\mathbb{Y}_{t-1}, Y_{t}=S_{i}, \mathbb{X}_{t} ; \Theta\right)
$$

$$
\Rightarrow \quad \delta_{t+1}(j)=\max _{S_{i}}\left[\delta_{t}(i) a_{i j}\right] b_{j}\left(X_{t+1}\right)
$$

$$
\Rightarrow \quad p^{*}=\max _{1 \leq i \leq N} \delta_{n}(i)
$$

## The Viterbi Algorithm for Solving Problem I

- 3. Compute the value of an optimal solution in a bottom-up fashion

$$
\begin{aligned}
1 \leq i & \leq N \\
\delta_{1}(i) & =p\left(Y_{1}=S_{i}, X_{1} ; \Theta\right)=p\left(Y_{1}=S_{i}\right) p\left(X_{1} \mid Y_{1}=S_{i}\right)=\pi_{1 i} b_{i}\left(X_{1}\right)
\end{aligned}
$$

- 4. Construct an optimal solution from computed information


## The Viterbi Algorithm for Solving Problem I

- (1) Initialization:

$$
\delta_{1}(i)=\pi_{1 i} b_{i}\left(X_{1}\right), \gamma_{1}(i)=0,1 \leq i \leq N
$$

- (2) Forward maximization: for $t=2, \ldots, n$,

$$
\begin{aligned}
& \delta_{t}(i)=\max _{1 \leq i \leq N} \delta_{t-1}(i) a_{i j} b_{j}\left(X_{t}\right), 1 \leq j \leq N \\
& \gamma_{t}(j)=\arg \max _{1 \leq i \leq N} \delta_{t-1}(i) a_{i j}
\end{aligned}
$$

- (3) Termination:

$$
p^{*}=\max _{1 \leq i \leq N} \delta_{n}(i) \quad Y_{n}^{*}=\arg \max _{1 \leq i \leq N} \delta_{n}(i)
$$

- (4) Backward tracking: for $t=n-1, \ldots, 1$

$$
Y_{t}^{*}=\gamma_{t+1}\left(Y_{t+1}^{*}\right)
$$

## The Viterbi Algorithm for Solving Problem I

- The time complexity of parsing the entire state sequence:

$$
O\left(n \times N^{2}\right)
$$

## Forward-Backward Summation for Solving Problem II

- How to compute the likelihood $p(\mathbb{X} ; \Theta)$ ? (i.e. Membership)

$$
p(\mathbb{X} ; \Theta)=\sum_{i=1}^{N} p\left(\mathbb{X}, Y_{n}=S_{i} ; \Theta\right)
$$

- How to compute the marginal belief at $\mathrm{t} \quad p\left(Y_{t}=S_{i} \mid \mathbb{X}, \Theta\right)$ ?

$$
p\left(Y_{t}=S_{i} \mid \mathbb{X} ; \Theta\right)=\frac{p\left(\mathbb{X}, Y_{t}=S_{i} ; \Theta\right)}{p(\mathbb{X} ; \Theta)}
$$

## Forward-Backward Summation for Solving Problem II

- Define

$$
\alpha_{t}(i)=p\left(\mathbb{X}_{t}, Y_{t}=S_{i} ; \Theta\right) \quad, \text { where } \quad \mathbb{X}_{t}=\left[X_{1}, \ldots, X_{t}\right]
$$

$$
\beta_{t}(i)=p\left(\mathbb{X}_{-t} \mid Y_{t}=S_{i} ; \Theta\right), \text { where } \quad \mathbb{X}_{-t}=\left[X_{t+1}, \ldots, X_{n}\right]
$$




## Forward-Backward Summation for Solving Problem II

- Define

$$
\alpha_{t}(i)=p\left(\mathbb{X}_{t}, Y_{t}=S_{i} ; \Theta\right) \quad, \text { where } \quad \mathbb{X}_{t}=\left[X_{1}, \ldots, X_{t}\right]
$$

$$
\beta_{t}(i)=p\left(\mathbb{X}_{-t} \mid Y_{t}=S_{i} ; \Theta\right), \text { where } \quad \mathbb{X}_{-t}=\left[X_{t+1}, \ldots, X_{n}\right]
$$

- Then, $\alpha_{1}(i)=\pi_{1 i} b_{i}\left(X_{1}\right)$

$$
\beta_{n}(i)=1 \quad / / \text { empty string, } \text { so probability = } 1
$$

$$
\begin{aligned}
& \Rightarrow p(\mathbb{X} ; \Theta)=\sum_{i=1}^{N} p\left(\mathbb{X}, Y_{n}=S_{i} ; \Theta\right)=\sum_{i=1}^{N} \alpha_{n}(i) \\
& p\left(Y_{t}=S_{i} \mid \mathbb{X} ; \Theta\right)=\frac{p\left(\mathbb{X}, Y_{t}=S_{i} ; \Theta\right)}{\sum_{j=1}^{N} p\left(\mathbb{X}, Y_{t}=S_{j} ; \Theta\right)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}
\end{aligned}
$$

(used later in Inside/Outside)

## Forward and Backward Recursions

- Forward recursion:

$$
\alpha_{t+1}(j)=p\left(\mathbb{X}_{t+1}, Y_{t+1}=S_{j} ; \Theta\right)
$$

$$
=\sum_{i=1}^{N} p\left(\mathbb{X}_{t}, X_{t+1}, Y_{t}=S_{i}, Y_{t+1}=S_{j} ; \Theta\right)
$$

$$
=\sum_{i=1}^{N} \alpha_{t}(i) a_{i j} b_{j}\left(X_{t+1}\right)
$$

- Backward recursion:

$$
\begin{aligned}
\beta_{t}(i) & =p\left(\mathbb{X}_{-t} \mid Y_{t}=S_{i} ; \Theta\right) \\
& =\sum_{j=1}^{N} p\left(\mathbb{X}_{-t}, Y_{t+1}=S_{j} \mid Y_{t}=S_{i} ; \Theta\right) \\
& =\sum_{j=1}^{N} \alpha_{i j} b_{j}\left(X_{t+1}\right) \beta_{t+1}(j)
\end{aligned}
$$

## The Forward-Backward Summation Algorithm

- The forward summation
- (1) Initialization $\quad \alpha_{1}(i)=\pi_{1 i} b_{i}\left(X_{1}\right) \quad 1 \leq i \leq N$
- (2) Recursion: for $\quad t=1,2, \ldots, n-1$

$$
1 \leq j \leq N, \alpha_{t+1}(j)=\sum_{i=1}^{N} \alpha_{t}(i) a_{i j} b_{j}\left(X_{t+1}\right)
$$

- (3) Termination $\quad p(\mathbb{X} ; \Theta)=\sum_{i=1}^{N} \alpha_{n}(i)$
- The backward summation
- (1) Initialization $\quad \beta_{n}(i)=1,1 \leq i \leq N$

- (2) Recursion: for $t=n-1, n-2, \ldots, 1$

$$
1 \leq i \leq N, \beta_{t}(i)=\sum_{j=1}^{N} \alpha_{i j} b_{j}\left(X_{t+1}\right) \beta_{t+1}(j)
$$

- (3) $1 \leq t \leq n, 1 \leq i \leq N$

$$
p\left(Y_{t}=S_{i} \mid \mathbb{X} ; \Theta\right)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)}
$$

## Chart Parsing

- Motivation: General search not suitable

Local ambiguities of grammar => The same syntactic constituent may be rederived as a part of larger constituents

- Basic idea: Do not throw away any information. Keep a record --- a chart --- of all the structures found


## Two Types of Chart Parsing

- Passive = Bottom-up parsing
- Active = Agenda-driven chart parsing
- Bottom-up active chart parsing
- Top-down active chart parsing
- Agenda is used to prioritize constituents to be processed as
- Stack to simulate depth-first search (DFS)
- Queue to simulate breadth-first search (BFS)
- Priority queue to simulate best-first search


## What is a chart?

Chart $=$ Well-formed substring table (WFST)

- Plays a role of the memo-table as in DP
- Keeps a track of partial derivations


## What is a chart?

Charts are represented by directed graphs $G=(V, E)$

- $V=\{1,2, \ldots, n\}$ represents the input sentence, where $i$ - th node corresponds to $i$-th word,
- Each edge $e \in E$ represents a completed, or partial constituent which spans a group of words, e.g., $e=($ start, end, label, found, tofind $) \in E$
- label = Nonterminal node, e.g., LHS of a certain rule in grammar
- found $=$ Part of RHS of label which explains words from start to end
- tofind $=$ Remainder of the sentence beside the found part
- Active edge: tofind is not empty
- Inactive edge (passive edge): tofind is empty


## The Fundamental Rule: Combines active and passive edges

$$
e=(\text { start }, \text { end }, \text { label }, \text { found }, \text { tofind }) \in E
$$

An active edge: $e_{1}=(i, j, V P, D V, N P P P) \quad$ A passive edge: $e_{2}=(j, k, N P, \operatorname{Det} N, \emptyset)$


## The Fundamental Rule: Combines active and passive edges

$$
e=(\text { start }, \text { end, label }, \text { found }, \text { tofind }) \in E
$$

An active edge: $e_{1}=(i, j, V P, D V, N P P P) \quad$ A passive edge: $e_{2}=(j, k, N P, \operatorname{Det} N, \emptyset)$


## The Fundamental Rule: Combines Active and Passive Edges

$$
e=(\text { start }, \text { end, label }, \text { found }, \text { tofind }) \in E
$$

An active edge: $e_{1}=(i, j, V P, D V, N P P P) \quad$ A passive edge: $e_{2}=(j, k, N P, \operatorname{Det} N, \emptyset)$


The fundamental rule

## The Fundamental Rule: Combines Active and Passive Edges

$$
e=(\text { start }, \text { end, label }, \text { found }, \text { tofind }) \in E
$$

An active edge: $e_{1}=(i, j, V P, D V, N P P P) \quad$ A passive edge: $e_{2}=(j, k, N P, \operatorname{Det} N, \emptyset)$


The fundamental rule

## The Fundamental Rule: Combines Active and Passive Edges

$$
e=(\text { start }, \text { end, label }, \text { found }, \text { tofind }) \in E
$$

An active edge: $e_{1}=(i, j, V P, D V, N P P P) \quad$ A passive edge: $e_{2}=(j, k, N P, \operatorname{Det} N, \emptyset)$


## What is a agenda?

- Agenda $=$ Set of edges waiting to be added to the chart
- Determines the order in which edges are added to the chart
- Stack agenda for depth-first search
- Queue agenda for breadth-first search
- Priority queue agenda for best-first search
- Ordering is decided by Figures of Merit (FOM) of elements


## Bottom-up passive chart parsing

Basic algorithm flow: Scan the input sentence left-to-right and make use of CFG rules right-to-left to add more edges into the chart by using the fundamental rule.

```
Grammar:
1.S }->\textrm{NP}\mathrm{ VP
2. NP }->\mathrm{ DET ADJ N
3. NP }->\mathrm{ DET N
4. NP }->\mathrm{ ADJ N
5. VP }->\mathrm{ AUX V NP
6. VP }->\textrm{V NP
Lexicon:
the... DET
large... ADJ
can... AUX, N, V
hold... N, V
water... N, V
Sentence: 0 The }\mp@subsup{1}{1}{}\mp@subsup{\mathrm{ large }}{2}{}\mathrm{ can 3 can }4\mathrm{ hold 5 the 6 water }
```


## Cocke-Younger-Kasami (CYK) algorithm

- CYK algorithm = Bottom-up passive chart parsing algorithm
- The context-free grammar (CFG) must be in Chomsky normal form (CNF)
- The goal:
- Determine if the sentence can be generated by a given CFG
- If so, how it can be generated (e.g., parse tree construction)


## Bottom-up passive chart parsing



## Cocke-Younger-Kasami (CYK) algorithm

- The worst case running time of CYK is $O\left(n^{3}|G|\right)$

$$
\begin{aligned}
n & =\text { Length of the input sentence and } \\
|G| & =\text { Size of grammar }
\end{aligned}
$$

- Drawback of all known transformations into CNF:

May lead to a blow-up in grammar size

- Let $g$ be the size of grammar
=> blow-up may range from $g^{2}$ to $2^{2 g}$


## CYK algorithm

- Input: a sentence $\mathbb{X}=w_{1} \ldots w_{n}$ and the grammar $G$ with $S$ being the root.
- Let $w_{i j}=w_{i} w_{i+1} \ldots w_{i+j-1}$ be the substring of $\mathbb{X}$ of length $j$ starting with $w_{i}$. Then, we have $\mathbb{X}=w_{1 n}$.
- Output: verify whether $S \Rightarrow \mathbb{X}$. If yes, construct all possible parse trees.
- The algorithm: for every $w_{i j}$ and every rule $R \in G$, determine if $R \Rightarrow w_{i j}$ and the probability if necessary.
- Define an auxiliary 4-tuple variable for each rule $R_{k} \in G$ : $v_{k}=(k$, probability, pointerLeft, pointerRight)
- CYK table with the entries $V_{i j}, 1 \leq i \leq n, 1 \leq j \leq n-i+1$ storing the auxiliary variables of the rules which can explain substring
- Start with substrings of length 1: $w_{i 1}=w_{i}, 1 \leq n$, set

$$
V_{i 1}=\left\{v_{k}=\left(k, \operatorname{Pr}\left(R_{k} \mid w_{i 1}\right), \emptyset, \emptyset\right): R_{k} \Rightarrow w_{i 1}, R_{k} \in G\right\}
$$

- Continue with substrings of length $j=2,3, \ldots, n-i+1$
- For $w_{i j}$, consider all two-part partitions $w_{i j}=w_{i m} w_{i+m}{ }_{j-m}, 1 \leq m \leq j$

$$
\begin{aligned}
& V_{i j}=\left\{v_{k}=\left(k, \operatorname{Pr}\left(R_{k} \mid w_{i j}\right), v_{k_{l}}, v_{k_{r}}\right): R_{k} \Rightarrow R_{k_{l}} R_{k_{r}}, R_{k_{l}} \Rightarrow w_{i m},\right. \\
&\left.R_{k_{r}} \Rightarrow w_{i+m},{ }_{j-m}, R_{k}, R_{k_{l}}, R_{k_{r}} \in G\right\}
\end{aligned}
$$

## CYK algorithm -- Example



## Bottom-up Active Chart Parsing - Algorithm Flow

1. Initialize chart and agenda

Chart $=$ empty, Agenda $=$ \{passive edges for all rules for all words $\}$
2. Repeat until agenda is empty

- Select an edge from Agenda (e.g., DFS, BFS) $e=($ start, end, label, found, tofind $) \in E$
- Add $e$ to the chart at position (start, end) if it is not in the chart
- Use the fundamental rule to combine $e$ with other edges from the chart
- If $e$ is PASSIVE, look for grammar rules $r$ which have found as the first symbol on the RHS
- For each $r$, build active edge $e^{\prime}$ and add it to Agenda $e^{\prime}=\left(\right.$ start, start $, r, \emptyset$, found $\left.V_{\text {remaining }}\right)$

3. Succeed if there is a passive edge $e=(0, n, S$, found, 0$)$, where $S$ is the root node in grammar

## An example of bottom-up active chart parsing

Mia danced

Chart

Agenda

| 0 | mia | 1 | danced |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| 1. $\langle 0,1, P N \rightarrow$ mia.$\rangle$ |  |  |  |
| 2. | $\langle 1,2, I V \rightarrow$ danced.$\rangle$ |  |  |


| $\overbrace{0}^{P N \rightarrow \text { mia }} 1 \text { danced } \quad 2$ |  |
| :---: | :---: |
| $\begin{aligned} & \text { 1. }\langle 0,0, N P \rightarrow . P N\rangle \\ & \text { 2. }\langle 1,2, I V \rightarrow \text { danced } .\rangle \end{aligned}$ | 1. $\langle 0,1, N P \rightarrow P N$. <br> 2. $\langle 1,2, I V \rightarrow$ danced .) |



## Top-down vs. Bottom-up Active Chart Parsing

- Bottom-up active chart parsing
- Checks the input sentence, and builds each constituent exactly once. No duplication of effort.
- May build constituents that cannot be later used legally
- Reads the rules right-to-left, and starts with the information in passive edges
- Top-down chart parsing
- Highly predictive. Only grammar rules that can be legally applied will be put to the chart
- Reads the rules left-to-right, and starts with the information in active edges


## Top-down Active Chart Parsing - Earley Parser

- Initialize chart and agenda

Chart = \{passive edges for all rules for all words $\}, \quad$ Agenda $=\{r o o t ~ r u l e s ~\} ~$

- Repeat until agenda is empty
- Select an edge from Agenda (e.g., DFS, BFS)
$e=($ start, end, label, found, tofind $) \in E$
- Add $e$ to the chart at position (start, end) if it is not in the chart
- Use the fundamental rule to combine $e$ with other edges from the chart
- If $e$ is ACTIVE, then look for grammar rules $r$ which have the form

$$
r=\text { tofind } \rightarrow V_{1} \ldots V_{m}
$$

- For each $r$, build active edge $e^{\prime}$ and add it to Agenda

$$
e^{\prime}=\left(e n d, e n d, r, \emptyset, V_{1} \ldots V_{m}\right)
$$

- Succeed if there is a passive edge $e=(0, n, S$, found, $\emptyset$ ) , where $S$ is the root node in grammar


## An example of top-down active chart parsing

Chart

Agenda
(


## Best-first Chart Parsing

- Agenda uses a priority queue to keep track of partial derivations
- Ordering is calculated using figures of merit of constituents (FOM)
- FOM $\approx$ Likelihood that the constituents will appear in a correct parse


Constituent $N_{j, k}^{i}$ in the sentence

Ideally, the objective is to pick the constituent that maximizes the conditional probability: $p\left(N_{j, k}^{i} \mid t_{0, n}\right)$

Key problem: How to estimate

$$
p\left(N_{j, k}^{i} \mid t_{0, n}\right)=?
$$

## Ideal Figures of Merit

$$
\begin{aligned}
p\left(N_{j, k}^{i} \mid t_{0, n}\right)= & \frac{p\left(N_{j, k}^{i}, t_{0, n}\right)}{p\left(t_{0, n}\right)}=\frac{p\left(N_{j, k}^{i}, t_{0, j}, t_{j, k}, t_{k, n}\right)}{p\left(t_{0, n}\right)} \\
& =\frac{p\left(N_{j, k}^{i}, t_{0, j}, t_{k, n}\right) p\left(t_{j, k} \mid N_{j, k}^{i}, t_{0, j}, t_{k, n}\right)}{p\left(t_{0, n}\right)}
\end{aligned}
$$

## Ideal Figures of Merit

$$
\begin{aligned}
p\left(N_{j, k}^{i} \mid t_{0, n}\right)= & \frac{p\left(N_{j, k}^{i}, t_{0, n}\right)}{p\left(t_{0, n}\right)}=\frac{p\left(N_{j, k}^{i}, t_{0, j}, t_{j, k}, t_{k, n}\right)}{p\left(t_{0, n}\right)} \\
& =\frac{p\left(N_{j, k}^{i}, t_{0, j}, t_{k, n}\right) p\left(t_{j, k} \mid N_{j, k}^{i}, t_{0, j}, t_{k, n}\right)}{p\left(t_{0, n}\right)} \\
& =\frac{p\left(N_{j, k}^{i}, t_{0, j}, t_{k, n}\right) p\left(t_{j, k} \mid N_{j, k}^{i}\right)}{p\left(t_{0, n}\right)} \\
& =\frac{p^{o u t}\left(N_{j, k}^{i}\right) p^{i n}\left(N_{j, k}^{i}\right)}{p\left(t_{0, n}\right)}
\end{aligned}
$$

## Ideal Figures of Merit

$$
p\left(N_{j, k}^{i} \mid t_{0, n}\right)=\frac{p^{o u t}\left(N_{j, k}^{i}\right) p^{i n}\left(N_{j, k}^{i}\right)}{p\left(t_{0, n}\right)}
$$

## outside probability

$$
p^{o u t}\left(N_{j, k}^{i}\right)=p\left(N_{j, k}^{i}, t_{0, j}, t_{k, n}\right)
$$



Inside probability includes only words within the constituent
inside probability

$$
p^{i n}\left(N_{j, k}^{i}\right)=p\left(t_{j, k} \mid N_{j, k}^{i}\right)
$$



Outside probability includes the entire context of the constituent

## Simple Figures of Merit - Trigram Estimate

$$
p\left(N_{j, k}^{i} \mid t_{0, n}\right)=\frac{p\left(N_{j, k}^{i}, t_{0, n}\right)}{p\left(t_{0, n}\right)}=\frac{p\left(t_{0, j}, t_{k, n}\right) p\left(N_{j, k}^{i} \mid t_{0, j}, t_{k, n}\right) p\left(t_{j, k} \mid N_{j, k}^{i}, t_{0, j}, t_{k, n}\right)}{p\left(t_{0, j}, t_{k, n}\right) p\left(t_{j, k} \mid t_{0, j}, t_{k, n}\right)}
$$

## Assume

$$
\begin{aligned}
& p\left(N_{j, k}^{i} \mid t_{0, j}, t_{k, n}\right) \approx p\left(N_{j, k}^{i}\right)=p\left(N^{i}\right) \\
& p\left(t_{j, k} \mid t_{0, j}, t_{k, n}\right) \approx p\left(t_{j, k} \mid t_{j-2}, t_{j-1}\right)=\prod_{a=j}^{k-1} p\left(t_{a} \mid t_{a-2}, t_{a-1}\right) \\
\Rightarrow & p\left(N_{j, k}^{i} \mid t_{0, n}\right) \approx \frac{p\left(N^{i}\right) p^{i n}\left(N_{j, k}^{i}\right)}{\prod_{a=j}^{k-1} p\left(t_{a} \mid t_{a-2}, t_{a-1}\right)}
\end{aligned}
$$

## Figures of Merit Using Boundary Statistics

$$
\begin{aligned}
p\left(N_{j, k}^{i} \mid t_{0, n}\right) & =\frac{p\left(N_{j, k}^{i}, t_{0, n}\right)}{p\left(t_{0, n}\right)}=\frac{p\left(N_{j, k}^{i}, t_{0, j}, t_{j, k}, t_{k, n}\right)}{p\left(t_{0, j}, t_{k, n}\right) p\left(t_{j, k} \mid t_{0, j}, t_{k, n}\right)} \\
& \approx \frac{p\left(N_{j, k}^{i} \mid t_{0, j}, t_{k, n}\right) p^{i n}\left(N_{j, k}^{i}\right)}{p\left(t_{j, k} \mid t_{0, j}, t_{k, n}\right)}
\end{aligned}
$$

Assume: $p\left(t_{j, k} \mid t_{0, j}, t_{k, n}\right) \approx p\left(t_{j, k} \mid t_{j-2}, t_{j-1}\right)$

$$
p\left(N_{j, k}^{i} \mid t_{0, j}, t_{k, n}\right) \approx p\left(N_{j, k}^{i} \mid t_{j-1}\right) \quad \text { left boundary model }
$$

$$
\Rightarrow \quad p\left(N_{j, k}^{i} \mid t_{0, n}\right) \approx \frac{p\left(N_{j, k}^{i} \mid t_{j-1}\right) p^{i n}\left(N_{j, k}^{i}\right)}{p\left(t_{j, k} \mid t_{j-2}, t_{j-1}\right)}
$$

## Figures of Merit Using Boundary Statistics

$$
p\left(N_{j, k}^{i} \mid t_{0, n}\right)=\frac{p\left(N_{j, k}^{i} \mid t_{0, j}\right) p\left(t_{j, k} \mid N_{j, k}^{i}, t_{0, j}\right) p\left(t_{k} \mid N_{j, k}^{i}, t_{0, k}\right) p\left(t_{k+1, n} \mid t_{0, k+1}, N_{j, k}^{i}\right)}{p\left(t_{0, j}\right) p\left(t_{j, k} \mid t_{0, j}\right) p\left(t_{k} \mid t_{0, k}\right) p\left(t_{k+1, n} \mid t_{0, k+1}\right)}
$$

Assume $t_{k+1, n}$ depends only on the previous tags

$$
\begin{aligned}
\Rightarrow p\left(N_{j, k}^{i} \mid t_{0, n}\right) & \approx \frac{p\left(N_{j, k}^{i} \mid t_{0, j}\right) p^{i n}\left(N_{j, k}\right) p\left(t_{k} \mid N_{j, k}^{i}, t_{0, k}\right)}{p\left(t_{j, k+1} \mid t_{0, j}\right)} \\
& \approx \frac{p\left(N_{j, k}^{i} \mid t_{0, j}\right) p^{i n}\left(N_{j, k}\right) p\left(t_{k} \mid N_{j, k}^{i}\right)}{p\left(t_{j, k+1} \mid t_{j-2}, t_{j-1}\right)}
\end{aligned}
$$

## Open Problem: Bottom-up or Top-down Inference


(a) bottom-up graph construction

(b) Top-down graph construction

Which inference is more suitable? This is object-dependent

## Embedding the integrated models into an And-Or graph



some graph configurations generated by the AndOr graph



## Representing a grammar by and-or graph



## Representing a grammar by and-or graph



## An example: the clock category


(b) Parsing graphs for instances


## Top-down / Bottom-up Inference at all levels

Objective: Constructing parse graphs on-line !


Image parsing by DDMCMC, Tu et al, 2002-05

## A simpler and more flexible graph grammar



One terminal sub-template
--- a planar rectangle in 3-space


Han and Zhu 2005

## Six grammar rules which can be used recursively



Two configuration examples


## Bottom-up detection (proposal) of rectangles

Each rectangle consists of two pairs of line segments that share a vanish point.

line segments in three groups

## Top-down / bottom-up inference



## Each grammar rule is an assembly line and maintains an Open-list and Closed-list of particles

A particle is a production rule partially matched, its probability measures an approximated posterior probability ratio.


## Example of top-down / bottom-up inference



## Results

(Han and Zhu, 05)


Edge map


Rectangles inferred

## Likelihood model based on primal sketch



$$
\begin{aligned}
& \Lambda=\Lambda_{\mathrm{sk}} \cup \Lambda_{\mathrm{nsk}} \\
& \Lambda_{\mathrm{sk}}=\cup_{k=1}^{N} \Lambda_{\mathrm{sk}, \mathrm{k}} \\
& \quad \wedge_{\mathrm{nsk}}=\cup_{m=1}^{M} \wedge_{\mathrm{nsk}, \mathrm{~m}} \\
& \wedge_{\mathrm{nsk}, \mathrm{~m}_{1}} \cap \wedge_{\mathrm{nsk}, \mathrm{~m}_{2}}=\emptyset, m_{1} \neq m_{2}
\end{aligned}
$$

$$
p\left(\mathbf{I}_{\mathrm{sk}, \mathrm{k}} \mid C\right) \propto \exp \left\{-\sum_{(x, y) \in \Lambda_{\mathrm{sk}, \mathrm{k}}} \frac{\left(\mathbf{I}(x, y)-B_{k}(x, y)\right)^{2}}{2 \sigma^{2}}\right\}
$$

$$
p(\mathbf{I} \mid C(\mathbf{G}))=\frac{1}{Z} \exp \left\{-\sum_{k=1}^{N} \sum_{(x, y) \in \Lambda_{\mathrm{sk}, \mathrm{k}}} \frac{\left(\mathbf{I}(x, y)-B_{k}(x, y)\right)^{2}}{2 \sigma^{2}}-\sum_{m=1}^{M} \sum_{i=1}^{n}\left\langle\beta_{m i}, h_{i}\left(\mathbf{I}_{\Lambda_{\mathrm{nsk}, \mathrm{~m}}}\right)\right\rangle\right\}
$$

Sep 14, 2005

Synthesis based on the parsing model



## Synthesis based on the parsing model



## Parsing rectangular scenes by grammar



## How much does top-down improve bottom-up?

In the rectangle experiments:
Han and Zhu, 2005-07


