Inference of SIG

Song-Chun Zhu, Sinisa Todorovic, and Ales Leonardis

At CVPR, Providence, Rhode Island June 16, 2012

Typical parsing algorithms in the NLP literature

- 1. Pure bottom-up: CYK chart parsing, 1960s (Cocke, Younger, Kasami)
- 2. Pure top-down: Earley-parser, 1970s (Earley, Stockle)
- 3. Recursive/iterative: Inside-outside algorithm, 1980s (Baker, Lori, Young)
- 4. Heuristic: Best-first Chart Parsing, 2000s (Chaniak, Johnson, Klein, Manning)

Dynamic Programming (DP)

- Definition: Solve an optimization problem by partitioning it into (simpler) subproblems, and re-use solutions of the subproblems (memoization), rather than re-computing them.
- Applications:

. . .

- DP is a major paradigm in solving optimization problems
- Viterbi algorithm (e.g., for hidden Markov models)
- Cocke-Younger-Kasami (CYK) algorithm
- Earley algorithm (a type of chart parser)
- Value Iteration (e.g., for Markov decision process)

Four Steps in Developing a DP Algorithm

- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute this value in a bottom-up fashion
- 4. Find an optimal solution from computed information

DP for a Chain Model -- The Viterbi algorithm for HMM

• The goal: Find the most likely sequence of hidden states that produces the sequence of observed events

Hidden Markov Model (HMM)

- State space: $S = (S_1, \ldots, S_N)$, N states
- Distinct observation symbols: $V = (v_1, \ldots, v_M)$, M symbols
- Observation sequence: $\{X_1, X_2, \dots, X_t, \dots\}$, $X_t \in V$
- Hidden state sequence: $\{Y_1,Y_2,\ldots,Y_t,\ldots\}$, $Y_t\in S$
- State transition matrix: $A = (a_{ij})_{N \times N}$,

$$a_{ij} = p(Y_{t+1} = S_j | Y_t = S_i), \ 1 \le i, j \le N$$

• Emission probability in state $S_j : B = (b_j(k))$,

$$b_j(k) = p(X_t = v_k | Y_t = S_j), \quad 1 \le j \le N, \quad 1 \le k \le M$$

Hidden Markov Model (HMM)

• The prior initial state distribution: $\Pi_1 = (\pi_{11}, \pi_{12}, \dots, \pi_{1N})$

$$\pi_{1j} = p(Y_1 = S_j), \ 1 \le j \le N$$

• Joint probability:

$$p(X_1, \dots, X_n, Y_1, \dots, Y_n; A, B, \Pi_1)$$

= $p(Y_1)p(X_1|Y_1) \prod_{t=2}^n p(Y_t|Y_{t-1})p(X_t|Y_t)$

Three Basic Problems in HMM

Hidden statesObservationsModel parameters $\mathbb{Y} = [Y_1, \dots, Y_n]$ $\mathbb{X} = [X_1, \dots, X_n]$ $\Theta = (A, B, \Pi_1)$

• Problem I: Given X and Θ , how to predict Y? (i.e. Inference)

$$\mathbb{Y}^* = \arg \max_{\mathbb{Y} \in \Omega} p(\mathbb{Y} | \mathbb{X}; \Theta) = \arg \max_{\mathbb{Y} \in \Omega} p(\mathbb{Y}, \mathbb{X}; \Theta)$$

where Ω is the solution space and $|\Omega| = N^n$

- Problem II: Given X, how to compute the likelihood of model parameters, $p(X; \Theta) = ?$ (i.e. Membership)
- Problem III: How to estimate Θ based on X? (i.e. Learning)

$$\widehat{\Theta}_{MLE} = \arg\max_{\Theta} p(\mathbb{X}; \Theta)$$

• 1. Characterize the structure of an optimal solution

• 2. Recursively define the value of an optimal solution

• 3. Compute this value in a bottom-up fashion

• 4. Construct an optimal solution from computed information

• 1. Characterize the structure of an optimal solution

$$p^* = \max_{\mathbb{Y}} p(\mathbb{X}, \mathbb{Y}; \Theta)$$
 and $\mathbb{Y}^* = \arg \max_{\mathbb{Y}} p(\mathbb{X}, \mathbb{Y}; \Theta)$

• 2. Recursively define the value of an optimal solution Denote $\mathbb{Y}_t = [Y_1, \dots, Y_t]$ and $\mathbb{X}_t = [X_1, \dots, X_t]$

Define
$$\delta_t(i) = \max_{\mathbb{Y}_{t-1}} p(\mathbb{Y}_{t-1}, Y_t = S_i, \mathbb{X}_t; \Theta)$$

$$\Rightarrow \qquad \delta_{t+1}(j) = \max_{S_i} \left[\delta_t(i) \ a_{ij} \right] b_j(X_{t+1})$$

$$\Rightarrow \qquad p^* = \max_{1 \le i \le N} \delta_n(i)$$

• 3. Compute the value of an optimal solution in a bottom-up fashion $1 \le i \le N$

$$\delta_1(i) = p(Y_1 = S_i, X_1; \Theta) = p(Y_1 = S_i)p(X_1|Y_1 = S_i) = \pi_{1i}b_i(X_1)$$

• 4. Construct an optimal solution from computed information

– (1) Initialization:

$$\delta_1(i) = \pi_{1i} b_i(X_1), \ \gamma_1(i) = 0, \ 1 \le i \le N,$$

- (2) Forward maximization: for
$$t = 2, ..., n$$
,
 $\delta_t(i) = \max_{1 \le i \le N} \delta_{t-1}(i) a_{ij} b_j(X_t), \ 1 \le j \le N$
 $\gamma_t(j) = \arg \max_{1 \le i \le N} \delta_{t-1}(i) a_{ij}$

– (3) Termination:

$$p^* = \max_{1 \le i \le N} \delta_n(i) \qquad Y_n^* = \arg \max_{1 \le i \le N} \delta_n(i)$$

- (4) Backward tracking: for $t = n - 1, \dots, 1$

$$Y_t^* = \gamma_{t+1}(Y_{t+1}^*)$$

• The time complexity of parsing the entire state sequence:

 $O(n \times N^2)$

Forward-Backward Summation for Solving Problem II

• How to compute the likelihood $p(X; \Theta)$? (i.e. Membership)

$$p(\mathbb{X};\Theta) = \sum_{i=1}^{N} p(\mathbb{X}, Y_n = S_i;\Theta)$$

• How to compute the marginal belief at t $p(Y_t = S_i | X, \Theta)$?

$$p(Y_t = S_i | \mathbb{X}; \Theta) = \frac{p(\mathbb{X}, Y_t = S_i; \Theta)}{p(\mathbb{X}; \Theta)}$$

Forward-Backward Summation for Solving Problem II

• Define
$$\alpha_t(i) = p(\mathbb{X}_t, Y_t = S_i; \Theta)$$
 , where $\mathbb{X}_t = [X_1, \dots, X_t]$

$$\beta_t(i) = p(\mathbb{X}_{-t}|Y_t = S_i; \Theta)$$
 , where $\mathbb{X}_{-t} = [X_{t+1}, \dots, X_n]$

Forward-Backward Summation for Solving Problem II

• Define
$$\alpha_t(i) = p(\mathbb{X}_t, Y_t = S_i; \Theta)$$
 , where $\mathbb{X}_t = [X_1, \dots, X_t]$

$$eta_t(i) = p(\mathbb{X}_{-t}|Y_t = S_i; \Theta)$$
 , where $\mathbb{X}_{-t} = [X_{t+1}, \dots, X_n]$

• Then,
$$\alpha_1(i) = \pi_{1i}b_i(X_1)$$

 $\beta_n(i) = 1$ // empty string, so probability = 1

=>

$$p(\mathbb{X};\Theta) = \sum_{i=1}^{N} p(\mathbb{X}, Y_n = S_i; \Theta) = \sum_{i=1}^{N} \alpha_n(i)$$
$$p(Y_t = S_i | \mathbb{X}; \Theta) = \frac{p(\mathbb{X}, Y_t = S_i; \Theta)}{\sum_{j=1}^{N} p(\mathbb{X}, Y_t = S_j; \Theta)} = \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^{N} \alpha_t(j)\beta_t(j)}$$

(used later in Inside/Outside)

Forward and Backward Recursions

• Forward recursion:

$$\alpha_{t+1}(j) = p(\mathbb{X}_{t+1}, Y_{t+1} = S_j; \Theta)$$

$$= \sum_{i=1}^{N} p(\mathbb{X}_t, X_{t+1}, Y_t = S_i, Y_{t+1} = S_j; \Theta)$$

$$=\sum_{i=1}^{N}\alpha_t(i)a_{ij}b_j(X_{t+1})$$

• Backward recursion:

$$\beta_t(i) = p(\mathbb{X}_{-t} | Y_t = S_i; \Theta)$$

=
$$\sum_{j=1}^N p(\mathbb{X}_{-t}, Y_{t+1} = S_j | Y_t = S_i; \Theta)$$

=
$$\sum_{j=1}^N \alpha_{ij} b_j(X_{t+1}) \beta_{t+1}(j)$$

The Forward-Backward Summation Algorithm

- The forward summation
 - (1) Initialization $\alpha_1(i) = \pi_{1i}b_i(X_1)$ $1 \le i \le N$
 - (2) Recursion: for t = 1, 2, ..., n 1 $1 \le j \le N, \ \alpha_{t+1}(j) = \sum_{i=1}^{N} \alpha_t(i) a_{ij} b_j(X_{t+1})$
 - (3) Termination $p(X; \Theta) = \sum_{i=1}^{N} \alpha_n(i)$
- The backward summation
 - (1) Initialization $\beta_n(i) = 1, \ 1 \le i \le N$

- (2) Recursion: for t = n - 1, n - 2, ..., 1

 $1 \le i \le N, \ \beta_t(i) = \sum_{j=1}^N \alpha_{ij} b_j(X_{t+1}) \beta_{t+1}(j)$

- (3) $1 \le t \le n, \ 1 \le i \le N$ $p(Y_t = S_i | \mathbb{X}; \Theta) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^N \alpha_t(j)\beta_t(j)}$

Chart Parsing

• Motivation: General search not suitable

Local ambiguities of grammar => The same syntactic constituent may be rederived as a part of larger constituents

• Basic idea: Do not throw away any information. Keep a record --- a chart --- of all the structures found

Two Types of Chart Parsing

- **Passive** = Bottom-up parsing
- Active = Agenda-driven chart parsing
 - Bottom-up active chart parsing
 - Top-down active chart parsing
 - Agenda is used to prioritize constituents to be processed as
 - Stack to simulate depth-first search (DFS)
 - Queue to simulate breadth-first search (BFS)
 - Priority queue to simulate best-first search

What is a chart?

Chart = Well-formed substring table (WFST)

- Plays a role of the memo-table as in DP
- Keeps a track of partial derivations

What is a chart?

Charts are represented by directed graphs G = (V, E)

- $V = \{1, 2, ..., n\}$ represents the input sentence, where i th node corresponds to i -th word,
- Each edge $e \in E$ represents a completed, or partial constituent which spans a group of words, e.g., $e = (start, end, label, found, tofind) \in E$
 - *label* = Nonterminal node, e.g., LHS of a certain rule in grammar
 - found = Part of RHS of *label* which explains words from start to end
 - *tofind* = Remainder of the sentence beside the *found* part
 - Active edge: *tofind* is not empty
 - Inactive edge (passive edge): tofind is empty

The Fundamental Rule: Combines active and passive edges

 $e = (start, end, label, found, to find) \in E$

The Fundamental Rule: Combines active and passive edges

 $e = (start, end, label, found, to find) \in E$

The Fundamental Rule: Combines Active and Passive Edges

 $e = (start, end, label, found, to find) \in E$

The Fundamental Rule: Combines Active and Passive Edges

 $e = (start, end, label, found, to find) \in E$

The Fundamental Rule: Combines Active and Passive Edges

 $e = (start, end, label, found, to find) \in E$

What is a agenda?

• Agenda = Set of edges waiting to be added to the chart

- Determines the order in which edges are added to the chart
 - Stack agenda for depth-first search
 - Queue agenda for breadth-first search
 - Priority queue agenda for best-first search

• Ordering is decided by Figures of Merit (FOM) of elements

Bottom-up passive chart parsing

Basic algorithm flow: Scan the input sentence left-to-right and make use of CFG rules right-to-left to add more edges into the chart by using the fundamental rule.

Grammar: 1. $S \rightarrow NP VP$ 2. $NP \rightarrow DET ADJ N$ 3. $NP \rightarrow DET N$ 4. $NP \rightarrow ADJ N$ 5. $VP \rightarrow AUX V NP$ 6. $VP \rightarrow V NP$	Lexicon: the DET large ADJ can AUX, N, V hold N, V water N, V
Sentence: 0 The 1 large 2 can 3 can 4 hold 5 the 6 water 7	

Cocke–Younger–Kasami (CYK) algorithm

• CYK algorithm = Bottom-up passive chart parsing algorithm

• The context-free grammar (CFG) must be in Chomsky normal form (CNF)

- The goal:
 - Determine if the sentence can be generated by a given CFG
 - If so, how it can be generated (e.g., parse tree construction)

Cocke–Younger–Kasami (CYK) algorithm

- The worst case running time of CYK is $O(n^3|G|)$
 - n = Length of the input sentence and
 - |G| = Size of grammar

Drawback of all known transformations into CNF:

May lead to a blow-up in grammar size

• Let g be the size of grammar => blow-up may range from g^2 to 2^{2g}

CYK algorithm

- Input: a sentence $X = w_1 \dots w_n$ and the grammar G with S being the root.
 - Let $w_{ij} = w_i w_{i+1} \dots w_{i+j-1}$ be the substring of $\mathbb X$ of length j starting with w_i . Then, we have $\mathbb X = w_{1n}$.
- Output: verify whether $S \Rightarrow X$. If yes, construct all possible parse trees.
- The algorithm: for every w_{ij} and every rule $R \in G$, determine if $R \Rightarrow w_{ij}$ and the probability if necessary.
 - Define an auxiliary 4-tuple variable for each rule $R_k \in G$: $v_k = (k, \ probability, \ pointerLeft, \ pointerRight)$
 - CYK table with the entries V_{ij} , $1 \le i \le n$, $1 \le j \le n i + 1$ storing the auxiliary variables of the rules which can explain substring .
 - Start with substrings of length 1: $w_{i1} = w_i$, $1 \le n$, set $V_{i1} = \{v_k = (k, Pr(R_k|w_{i1}), \emptyset, \emptyset) : R_k \Rightarrow w_{i1}, R_k \in G\}$
 - Continue with substrings of length $j = 2, 3, \ldots, n i + 1$
 - For w_{ij} , consider all two-part partitions $w_{ij} = w_{im}w_{i+m \ j-m}, \ 1 \le m \le j$ $V_{ij} = \{v_k = (k, Pr(R_k|w_{ij}), v_{k_l}, v_{k_r}) : R_k \Rightarrow R_{k_l}R_{k_r}, \ R_{k_l} \Rightarrow w_{im}, R_{k_r} \Rightarrow w_{i+m \ j-m}, \ R_k, R_{k_l}, R_{k_r} \in G\}$

CYK algorithm -- Example

 $\mathbb{X} = w_1$

 w_2

...

 w_n

Bottom-up Active Chart Parsing – Algorithm Flow

1. Initialize chart and agenda

Chart = empty, Agenda = {passive edges for all rules for all words}

- 2. Repeat until agenda is empty
 - Select an edge from Agenda (e.g., DFS, BFS) $e = (start, end, label, found, to find) \in E$
 - Add e to the chart at position (start, end) if it is not in the chart
 - Use the fundamental rule to combine e with other edges from the chart
 - If e is PASSIVE, look for grammar rules r which have found as the first symbol on the RHS
 - For each r, build active edge e' and add it to Agenda $e' = (start, start, r, \emptyset, found V_{remaining})$
- 3. Succeed if there is a passive edge e = (0, n, S, found, 0), where *S* is the root node in grammar

Top-down vs. Bottom-up Active Chart Parsing

- Bottom-up active chart parsing
 - Checks the input sentence, and builds each constituent exactly once. No duplication of effort.
 - May build constituents that cannot be later used legally
 - Reads the rules right-to-left, and starts with the information in passive edges
- Top-down chart parsing
 - Highly predictive. Only grammar rules that can be legally applied will be put to the chart
 - Reads the rules left-to-right, and starts with the information in active edges

Top-down Active Chart Parsing – Earley Parser

- Initialize chart and agenda
 - Chart = {passive edges for all rules for all words}, Agenda = {root rules}
- Repeat until agenda is empty
 - Select an edge from Agenda (e.g., DFS, BFS) $e = (start, end, label, found, to find) \in E$
 - Add e to the chart at position (start, end) if it is not in the chart
 - Use the fundamental rule to combine e with other edges from the chart
 - If e is ACTIVE, then look for grammar rules r which have the form $r = tofind \rightarrow V_1 \dots V_m$
 - For each r , build active edge e' and add it to Agenda

 $e' = (end, end, r, \emptyset, V_1 \dots V_m)$

• Succeed if there is a passive edge $e = (0, n, S, found, \emptyset)$, where *S* is the root node in grammar

Best-first Chart Parsing

- Agenda uses a priority queue to keep track of partial derivations
- Ordering is calculated using figures of merit of constituents (FOM)
- FOM \approx Likelihood that the constituents will appear in a correct parse

Constituent $N_{j,k}^i$ in the sentence

Ideally, the objective is to pick the constituent that maximizes the conditional probability: $p(N_{j,k}^{i}|t_{0,n})$

Key problem: How to estimate $p(N_{j,k}^{i}|t_{0,n}) = ?$

Ideal Figures of Merit

$$p(N_{j,k}^{i}|t_{0,n}) = \frac{p(N_{j,k}^{i}, t_{0,n})}{p(t_{0,n})} = \frac{p(N_{j,k}^{i}, t_{0,j}, t_{j,k}, t_{k,n})}{p(t_{0,n})}$$

$$=\frac{p(N_{j,k}^{i}, t_{0,j}, t_{k,n})p(t_{j,k}|N_{j,k}^{i}, t_{0,j}, t_{k,n})}{p(t_{0,n})}$$

Ideal Figures of Merit

$$p(N_{j,k}^{i}|t_{0,n}) = \frac{p(N_{j,k}^{i}, t_{0,n})}{p(t_{0,n})} = \frac{p(N_{j,k}^{i}, t_{0,j}, t_{j,k}, t_{k,n})}{p(t_{0,n})}$$

$$=\frac{p(N_{j,k}^{i}, t_{0,j}, t_{k,n})p(t_{j,k}|N_{j,k}^{i}, t_{0,j}, t_{k,n})}{p(t_{0,n})}$$

$$=\frac{p(N_{j,k}^{i}, t_{0,j}, t_{k,n})p(t_{j,k}|N_{j,k}^{i})}{p(t_{0,n})}$$

$$=\frac{p^{out}(N^{i}_{j,k})p^{in}(N^{i}_{j,k})}{p(t_{0,n})}$$

Ideal Figures of Merit

$$p(N_{j,k}^{i}|t_{0,n}) = \frac{p^{out}(N_{j,k}^{i})p^{in}(N_{j,k}^{i})}{p(t_{0,n})}$$

outside probability

inside probability

 $p^{out}(N^i_{j,k}) = p(N^i_{j,k}, t_{0,j}, t_{k,n})$

Inside probability includes only words within the constituent

Outside probability includes the entire context of the constituent

Simple Figures of Merit – Trigram Estimate

$$p(N_{j,k}^{i}|t_{0,n}) = \frac{p(N_{j,k}^{i}, t_{0,n})}{p(t_{0,n})} = \frac{p(t_{0,j}, t_{k,n})p(N_{j,k}^{i}|t_{0,j}, t_{k,n})p(t_{j,k}|N_{j,k}^{i}, t_{0,j}, t_{k,n})}{p(t_{0,j}, t_{k,n})p(t_{j,k}|t_{0,j}, t_{k,n})}$$

Assume

$$p(N_{j,k}^{i}|t_{0,j}, t_{k,n}) \approx p(N_{j,k}^{i}) = p(N^{i})$$
$$p(t_{j,k}|t_{0,j}, t_{k,n}) \approx p(t_{j,k}|t_{j-2}, t_{j-1}) = \prod_{a=j}^{k-1} p(t_{a}|t_{a-2}, t_{a-1})$$

$$\Rightarrow \qquad p(N_{j,k}^{i}|t_{0,n}) \approx \frac{p(N^{i})p^{in}(N_{j,k}^{i})}{\prod_{a=j}^{k-1} p(t_{a}|t_{a-2}, t_{a-1})}$$

Figures of Merit Using Boundary Statistics

Left boundary trigram estimate

istics
$$r_{0} \cdots r_{j-1} r_{j} \cdots r_{k-1} r_{k} \cdots r_{n-1}$$

$$p(N_{j,k}^{i}|t_{0,n}) = \frac{p(N_{j,k}^{i}, t_{0,n})}{p(t_{0,n})} = \frac{p(N_{j,k}^{i}, t_{0,j}, t_{j,k}, t_{k,n})}{p(t_{0,j}, t_{k,n})p(t_{j,k}|t_{0,j}, t_{k,n})}$$
$$\approx \frac{p(N_{j,k}^{i}|t_{0,j}, t_{k,n})p^{in}(N_{j,k}^{i})}{p(t_{j,k}|t_{0,j}, t_{k,n})}$$

Assume: $p(t_{j,k}|t_{0,j}, t_{k,n}) \approx p(t_{j,k}|t_{j-2}, t_{j-1})$

 $p(N_{j,k}^{i}|t_{0,j}, t_{k,n}) \approx p(N_{j,k}^{i}|t_{j-1})$ left boundary model

$$\Rightarrow \qquad p(N_{j,k}^{i}|t_{0,n}) \approx \frac{p(N_{j,k}^{i}|t_{j-1})p^{in}(N_{j,k}^{i})}{p(t_{j,k}|t_{j-2},t_{j-1})}$$

$$p(N_{j,k}^{i}|t_{0,n}) = \frac{p(N_{j,k}^{i}|t_{0,j})p(t_{j,k}|N_{j,k}^{i}, t_{0,j})p(t_{k}|N_{j,k}^{i}, t_{0,k})p(t_{k+1,n}|t_{0,k+1}, N_{j,k}^{i})}{p(t_{0,j})p(t_{j,k}|t_{0,j})p(t_{k}|t_{0,k})p(t_{k+1,n}|t_{0,k+1})}$$

Assume $t_{k+1,n}$ depends only on the previous tags

$$\Rightarrow \quad p(N_{j,k}^{i}|t_{0,n}) \approx \frac{p(N_{j,k}^{i}|t_{0,j})p^{in}(N_{j,k})p(t_{k}|N_{j,k}^{i},t_{0,k})}{p(t_{j,k+1}|t_{0,j})}$$

$$\approx \frac{p(N_{j,k}^{i}|t_{0,j})p^{in}(N_{j,k})p(t_{k}|N_{j,k}^{i})}{p(t_{j,k+1}|t_{j-2},t_{j-1})}$$

Open Problem: Bottom-up or Top-down Inference

Which inference is more suitable? This is object-dependent

Embedding the integrated models into an And-Or graph

some graph configurations generated by the AndOr graph

Representing a grammar by and-or graph

Or-node
And-node
leaf -node

Representing a grammar by and-or graph

An example: the clock category

Top-down / Bottom-up Inference at all levels

Objective: Constructing parse graphs on-line !

Image parsing by DDMCMC, Tu et al, 2002-05

A simpler and more flexible graph grammar

One terminal sub-template --- a planar rectangle in 3-space

Six grammar rules which can be used recursively

Two configuration examples

Bottom-up detection (proposal) of rectangles

Each rectangle consists of two pairs of line segments that share a vanish point.

line segments in three groups

Top-down / bottom-up inference

Each grammar rule is an assembly line and maintains an Open-list and Closed-list of particles

A particle is a production rule partially matched, its probability measures an approximated posterior probability ratio.

Example of top-down / bottom-up inference

Results

(Han and Zhu, 05)

Likelihood model based on primal sketch

Sep 14, 2005

Synthesis based on the parsing model

Synthesis based on the parsing model

Parsing rectangular scenes by grammar

How much does top-down improve bottom-up?

In the rectangle experiments:

Han and Zhu, 2005-07

