
Inference	
 of	
 SIG	

	

Song-­‐Chun	
 Zhu,	
 Sinisa	
 Todorovic,	
 and	
 Ales	
 Leonardis	
 	

	

At	
 CVPR,	
 Providence,	
 Rhode	
 Island	

June	
 16,	
 2012	

	

	

Typical parsing algorithms in the NLP literature

1. Pure bottom-up: CYK – chart parsing, 1960s
 (Cocke, Younger, Kasami)

 2. Pure top-down: Earley-parser, 1970s
 (Earley, Stockle)

 3. Recursive/iterative: Inside-outside algorithm, 1980s
 (Baker, Lori, Young)

 4. Heuristic: Best-first Chart Parsing, 2000s
 (Chaniak, Johnson, Klein, Manning)

Dynamic Programming (DP)

•  Definition: Solve an optimization problem by partitioning it
into (simpler) subproblems, and re-use solutions of the
subproblems (memoization), rather than re-computing them.

•  Applications:
–  DP is a major paradigm in solving optimization problems
–  Viterbi algorithm (e.g., for hidden Markov models)
–  Cocke-Younger-Kasami (CYK) algorithm
–  Earley algorithm (a type of chart parser)
–  Value Iteration (e.g., for Markov decision process)
– …

Four Steps in Developing a DP Algorithm

•  1. Characterize the structure of an optimal solution

•  2. Recursively define the value of an optimal solution

•  3. Compute this value in a bottom-up fashion

•  4. Find an optimal solution from computed information

DP for a Chain Model -- The Viterbi algorithm for HMM

•  The goal: Find the most likely sequence of hidden states
that produces the sequence of observed events

 

       

Observations

Hidden states

 
 
 
 
 

...
...

…

…

…

…

S1

S2

Si

SN

Y1 Y2 Yt Yn

X1 X2 Xt Xn

Viterbi path

…
…

Hidden Markov Model (HMM)

•  State space:   ,   states

•  Distinct observation symbols:   ,   symbols

•  Observation sequence:   ,  

•  Hidden state sequence:   ,  

•  State transition matrix:   ,

  

•  Emission probability in state     ,

  

S = (S1, . . . , SN) N

V = (v1, . . . , vM) M

{X1, X2, . . . ,Xt, ...} Xt 2 V

{Y1, Y2, . . . , Yt, . . . } Yt 2 S

A = (aij)N⇥N

bj(k) = p(Xt = vk|Yt = Sj), 1  j  N, 1  k M

aij = p(Yt+1 = Sj |Yt = Si), 1  i, j  N

Sj : B = (bj(k))

Hidden Markov Model (HMM)

  

•  The prior initial state distribution:  

  

•  Joint probability:

   p(X1, . . . ,Xn, Y1, . . . , Yn;A, B,⇧1)

⇧1 = (⇡11, ⇡12, . . . ,⇡1N)

⇡1j = p(Y1 = Sj), 1  j  N

= p(Y1)p(X1|Y1)
nY

t=2

p(Yt|Yt�1)p(Xt|Yt)

Three Basic Problems in HMM

•  Problem I: Given   and   , how to predict   ? (i.e. Inference)  

 where   is the solution space and  

•  Problem II: Given   , how to compute the likelihood of model parameters,
 (i.e. Membership)    

•  Problem III: How to estimate   based on   ? (i.e. Learning)
  

Y = [Y1, . . . , Yn] X = [X1, . . . ,Xn]

X ⇥ Y

Y⇤
= arg max

Y2⌦
p(Y|X; ⇥) = arg max

Y2⌦
p(Y, X; ⇥)

⌦ |⌦| = Nn

X

p(X; ⇥) =?

⇥ X

b
⇥MLE = arg max

⇥
p(X; ⇥)

⇥ = (A, B,⇧1)
Hidden states Observations Model parameters

The Viterbi Algorithm for Solving Problem I

•  1. Characterize the structure of an optimal solution

    

•  2. Recursively define the value of an optimal solution

  

•  3. Compute this value in a bottom-up fashion

  

•  4. Construct an optimal solution from computed information

The Viterbi Algorithm for Solving Problem I

•  1. Characterize the structure of an optimal solution

   and  

•  2. Recursively define the value of an optimal solution
 Denote   and  

 Define  

 =>  

  =>
  

  

p⇤ = max

Y
p(X, Y; ⇥) Y⇤

= arg max

Y
p(X, Y; ⇥)

Yt = [Y1, . . . , Yt] Xt = [X1, . . . ,Xt]

�t(i) = max

Yt�1
p(Yt�1, Yt = Si, Xt; ⇥)

�t+1(j) = max

Si

[�t(i) aij] bj(Xt+1)

p⇤ = max

1iN
�n(i)

The Viterbi Algorithm for Solving Problem I

  

•  3. Compute the value of an optimal solution in a bottom-up fashion

  

•  4. Construct an optimal solution from computed information

�1(i) = p(Y1 = Si, X1; ⇥) = p(Y1 = Si)p(X1|Y1 = Si) = ⇡1ibi(X1)

1  i  N

The Viterbi Algorithm for Solving Problem I

–  (1) Initialization:
     

–  (2) Forward maximization: for   ,
    

 

–  (3) Termination:
  

 
–  (4) Backward tracking: for  

  

�1(i) = ⇡1ibi(X1), �1(i) = 0, 1  i  N,

�t(i) = max

1iN
�t�1(i)aijbj(Xt), 1  j  N

�t(j) = arg max

1iN
�t�1(i)aij

t = n� 1, . . . , 1

Y ⇤
t = �t+1(Y ⇤

t+1)

t = 2, . . . , n

p⇤ = max

1iN
�n(i) Y ⇤

n = arg max

1iN
�n(i)

The Viterbi Algorithm for Solving Problem I

  

•  The time complexity of parsing the entire state sequence:

O(n⇥N2)

Forward-Backward Summation for Solving Problem II

•  How to compute the likelihood   ? (i.e. Membership)
  

•  How to compute the marginal belief at t ?  

p(X; ⇥)

p(X; ⇥) =
NX

i=1

p(X, Yn = Si; ⇥)

p(Yt = Si|X,⇥)

p(Yt = Si|X; ⇥) =
p(X, Yt = Si; ⇥)

p(X; ⇥)

Forward-Backward Summation for Solving Problem II

•  Define   , where  
  

 , where  

↵t(i) = p(Xt, Yt = Si; ⇥) Xt = [X1, . . . ,Xt]

�t(i) = p(X�t|Yt = Si; ⇥) X�t = [Xt+1, . . . ,Xn]

 

       

Observations

Hidden states

 
 
 
 
 

...
...

…

…

…

…

S1

S2

Si

SN

Y1 Y2 Yt Yn

X1 X2 Xt Xn

Viterbi path

…
…

↵t(i) �t(i)

Y1 Y2 Yt Yn

Forward-Backward Summation for Solving Problem II

•  Define   , where  
  

 , where  

•  Then,  
 // empty string, so probability = 1

=>

 (used later in Inside/Outside)

↵t(i) = p(Xt, Yt = Si; ⇥) Xt = [X1, . . . ,Xt]

�t(i) = p(X�t|Yt = Si; ⇥) X�t = [Xt+1, . . . ,Xn]

↵1(i) = ⇡1ibi(X1)

�n(i) = 1

p(X; ⇥) =
NX

i=1

p(X, Yn = Si; ⇥) =
NX

i=1

↵n(i)

p(Yt = Si|X; ⇥) =
p(X, Yt = Si; ⇥)

PN
j=1 p(X, Yt = Sj ; ⇥)

=
↵t(i)�t(i)PN

j=1 ↵t(j)�t(j)

Forward and Backward Recursions

•  Forward recursion:
  
  
  
  

•  Backward recursion:
  
  

  

↵t+1(j) = p(Xt+1, Yt+1 = Sj ; ⇥)

=
NX

i=1

↵t(i)aijbj(Xt+1)

=
NX

i=1

p(Xt, Xt+1, Yt = Si, Yt+1 = Sj ; ⇥)

�t(i) = p(X�t|Yt = Si; ⇥)

=
NX

j=1

p(X�t, Yt+1 = Sj |Yt = Si; ⇥)

=
NX

j=1

↵ijbj(Xt+1)�t+1(j)

The Forward-Backward Summation Algorithm
•  The forward summation

–  (1) Initialization    

–  (2) Recursion: for    

–  (3) Termination  
•  The backward summation

–  (1) Initialization  

–  (2) Recursion: for  

–  (3)  

  

↵1(i) = ⇡1ibi(X1) 1  i  N

t = 1, 2, . . . , n� 1

�n(i) = 1, 1  i  N

1  t  n, 1  i  N p(Yt = Si|X; ⇥) =
↵t(i)�t(i)PN

j=1 ↵t(j)�t(j)

1  j  N, ↵t+1(j) =
PN

i=1 ↵t(i)aijbj(Xt+1)

p(X; ⇥) =
PN

i=1 ↵n(i)

t = n� 1, n� 2, . . . , 1

1  i  N, �t(i) =
PN

j=1 ↵ijbj(Xt+1)�t+1(j)

Chart Parsing

•  Motivation: General search not suitable

Local ambiguities of grammar => The same syntactic

constituent may be rederived as a part of larger constituents

•  Basic idea: Do not throw away any information. Keep a

record --- a chart --- of all the structures found

Two Types of Chart Parsing

•  Passive = Bottom-up parsing

•  Active = Agenda-driven chart parsing

–  Bottom-up active chart parsing

–  Top-down active chart parsing

–  Agenda is used to prioritize constituents to be processed as

•  Stack to simulate depth-first search (DFS)

•  Queue to simulate breadth-first search (BFS)

•  Priority queue to simulate best-first search

What is a chart?

Chart = Well-formed substring table (WFST)

•  Plays a role of the memo-table as in DP

•  Keeps a track of partial derivations

What is a chart?

Charts are represented by directed graphs  

•  represents the input sentence, where   - th node

corresponds to -th word,  

•  Each edge   represents a completed, or partial constituent which

spans a group of words, e.g.,  

–    = Nonterminal node, e.g., LHS of a certain rule in grammar

–    = Part of RHS of   which explains words from   to  

–    = Remainder of the sentence beside the   part

–  Active edge:   is not empty

–  Inactive edge (passive edge):   is empty

G = (V,E)

V = {1, 2, . . . , n} i

e 2 E

label

found label start end

found

i

e = (start, end, label, found, tofind) 2 E

tofind

tofind

tofind

The Fundamental Rule: Combines active and passive edges

….. …..        

An active edge:   A passive edge:  

The fundamental rule

e1 = (i, j, V P, DV, NP PP) e2 = (j, k,NP, Det N, ;)

V P ! DV · NP PP NP ! Det N ·

i j j k

V P ! DV Det N · PP

e = (start, end, label, found, tofind) 2 E

The Fundamental Rule: Combines active and passive edges

….. …..        

An active edge:   A passive edge:   e1 = (i, j, V P, DV, NP PP) e2 = (j, k,NP, Det N, ;)

V P ! DV · NP PP NP ! Det N ·

i j j k

V P ! DV Det N · PP
We get a new active edge

 

 e3 = (i, k, V P,DV Det N, PP)

e = (start, end, label, found, tofind) 2 E

The Fundamental Rule: Combines Active and Passive Edges

….. …..        

An active edge:   A passive edge:   e1 = (i, j, V P, DV, NP PP) e2 = (j, k,NP, Det N, ;)

V P ! DV · NP PP NP ! Det N ·

i j j k

V P ! DV Det N · PP

….. ….. …..   i j k

V P ! DV · NP PP NP ! Det N · PP ! P NP ·

k l

V P ! DV Det N P NP ·

The fundamental rule

e = (start, end, label, found, tofind) 2 E

The Fundamental Rule: Combines Active and Passive Edges

….. …..        

An active edge:   A passive edge:   e1 = (i, j, V P, DV, NP PP) e2 = (j, k,NP, Det N, ;)

V P ! DV · NP PP NP ! Det N ·

i j j k

V P ! DV Det N · PP

….. ….. …..   i j k

V P ! DV · NP PP NP ! Det N · PP ! P NP ·

k l

V P ! DV Det N P NP ·

The fundamental rule

e = (start, end, label, found, tofind) 2 E

The Fundamental Rule: Combines Active and Passive Edges

….. …..        

An active edge:   A passive edge:   e1 = (i, j, V P, DV, NP PP) e2 = (j, k,NP, Det N, ;)

V P ! DV · NP PP NP ! Det N ·

i j j k

V P ! DV Det N · PP

….. ….. …..   i j k

V P ! DV · NP PP NP ! Det N · PP ! P NP ·

k l

V P ! DV Det N P NP ·

The fundamental rule

We get a passive edge
 

e4 = (i, l, V P, DV Det N PP, ;)

e = (start, end, label, found, tofind) 2 E

What is a agenda?

•  Agenda = Set of edges waiting to be added to the chart

•  Determines the order in which edges are added to the chart
–  Stack agenda for depth-first search
–  Queue agenda for breadth-first search
–  Priority queue agenda for best-first search

•  Ordering is decided by Figures of Merit (FOM) of elements

Bottom-up passive chart parsing

Basic algorithm flow: Scan the input sentence left-to-right and
make use of CFG rules right-to-left to add more edges into the
chart by using the fundamental rule.

Cocke–Younger–Kasami (CYK) algorithm

•  CYK algorithm = Bottom-up passive chart parsing algorithm

•  The context-free grammar (CFG) must be in Chomsky
normal form (CNF)

•  The goal:
–  Determine if the sentence can be generated by a given CFG

–  If so, how it can be generated (e.g., parse tree construction)

Bottom-up passive chart parsing

Cocke–Younger–Kasami (CYK) algorithm

•  The worst case running time of CYK is  
   = Length of the input sentence and
   = Size of grammar

•  Drawback of all known transformations into CNF:

May lead to a blow-up in grammar size

•  Let   be the size of grammar
 => blow-up may range from   to  

O(n3|G|)
n

|G|

g

g2 22g

CYK algorithm
•  Input: a sentence   and the grammar   with   being the root.

–  Let   be the substring of   of length   starting with   .
Then, we have   .

•  Output: verify whether   . If yes, construct all possible parse trees.

•  The algorithm: for every   and every rule   , determine if  
and the probability if necessary.

–  Define an auxiliary 4-tuple variable for each rule   :
  

–  CYK table with the entries   storing the
auxiliary variables of the rules which can explain substring   .

–  Start with substrings of length 1:  , set
  

–  Continue with substrings of length  
• For   , consider all two-part partitions  

  
 

G S

wij = wiwi+1. . . wi+j�1 j

wij R 2 G R) wij

Rk 2 G

wi1 = wi, 1  n

wij

X = w1. . . wn

X = w1n

X wi

S) X

Vij , 1  i  n, 1  j  n� i + 1

Vi1 = {vk = (k, Pr(Rk|wi1), ;, ;) : Rk) wi1, Rk 2 G}

wij = wimwi+m j�m, 1  m  j

Rkr) wi+m j�m, Rk, Rkl , Rkr 2 G}

j = 2, 3, . . . , n� i + 1

Vij = {vk = (k, Pr(Rk|wij), vkl , vkr) : Rk) RklRkr , Rkl) wim,

vk = (k, probability, pointerLeft, pointerRight)

CYK algorithm -- Example

     

1

n

w1 wnX = ... w2

Bottom-up Active Chart Parsing – Algorithm Flow

1.  Initialize chart and agenda
 Chart = empty, Agenda = {passive edges for all rules for all words}

2.  Repeat until agenda is empty
–  Select an edge from Agenda (e.g., DFS, BFS)

  
–  Add   to the chart at position   if it is not in the chart
–  Use the fundamental rule to combine   with other edges from the chart
–  If is PASSIVE, look for grammar rules which have   as the

first symbol on the RHS
–  For each   , build active edge   and add it to Agenda  

3.  Succeed if there is a passive edge   , where   is
the root node in grammar

(start, end)

found

e = (0, n, S, found, 0) S

e

0 = (start, start, r, ;, found Vremaining)

e = (start, end, label, found, tofind) 2 E

e
e

e r

r e0

An example of bottom-up active chart parsing Mia danced

Chart

Agenda

Top-down vs. Bottom-up Active Chart Parsing

•  Bottom-up active chart parsing
–  Checks the input sentence, and builds each constituent

exactly once. No duplication of effort.
–  May build constituents that cannot be later used legally
–  Reads the rules right-to-left, and starts with the

information in passive edges
•  Top-down chart parsing

–  Highly predictive. Only grammar rules that can be legally
applied will be put to the chart

–  Reads the rules left-to-right, and starts with the
information in active edges

Top-down Active Chart Parsing – Earley Parser

•  Initialize chart and agenda
 Chart = {passive edges for all rules for all words}, Agenda = {root rules}

•  Repeat until agenda is empty
–  Select an edge from Agenda (e.g., DFS, BFS)

  

–  Add   to the chart at position   if it is not in the chart
–  Use the fundamental rule to combine   with other edges from the chart
–  If is ACTIVE, then look for grammar rules which have the form  

–  For each   , build active edge   and add it to Agenda
  

•  Succeed if there is a passive edge   , where  
is the root node in grammar

(start, end)

e0

e0 = (end, end, r, ;, V1. . . Vm)

e = (0, n, S, found, ;) S

e = (start, end, label, found, tofind) 2 E

e

e

e r
r = tofind! V1. . . Vm

r

An example of top-down active chart parsing

Chart

Agenda

Mia danced

Best-first Chart Parsing

•  Agenda uses a priority queue to keep track of partial derivations

•  Ordering is calculated using figures of merit of constituents (FOM)

•  FOM ≈ Likelihood that the constituents will appear in a correct parse

Constituent   in the sentence  

Ideally, the objective is to pick the
constituent that maximizes the
conditional probability:  

Key problem: How to estimate

N i
j,k

p(N i
j,k|t0,n)

p(N i
j,k|t0,n) =?

Ideal Figures of Merit

p(N i
j,k|t0,n) =

p(N i
j,k, t0,n)

p(t0,n)
=

p(N i
j,k, t0,j , tj,k, tk,n)

p(t0,n)

=
p(N i

j,k, t0,j , tk,n)p(tj,k|N i
j,k, t0,j , tk,n)

p(t0,n)

Ideal Figures of Merit

p(N i
j,k|t0,n) =

p(N i
j,k, t0,n)

p(t0,n)
=

p(N i
j,k, t0,j , tj,k, tk,n)

p(t0,n)

=
p(N i

j,k, t0,j , tk,n)p(tj,k|N i
j,k, t0,j , tk,n)

p(t0,n)

=
p(N i

j,k, t0,j , tk,n)p(tj,k|N i
j,k)

p(t0,n)

=
pout(N i

j,k

)pin(N i

j,k

)
p(t0,n

)

Ideal Figures of Merit

 

  

  

Inside probability includes only
words within the constituent

Outside probability includes the
entire context of the constituent

p(N i

j,k

|t0,n

) =
pout(N i

j,k

)pin(N i

j,k

)
p(t0,n

)

inside probability outside probability

pout(N i

j,k

) = p(N i

j,k

, t0,j

, t
k,n

) pin(N i
j,k) = p(tj,k|N i

j,k)

Simple Figures of Merit – Trigram Estimate

p(N i
j,k|t0,n) =

p(N i
j,k, t0,n)

p(t0,n)
=

p(t0,j , tk,n)p(N i
j,k|t0,j , tk,n)p(tj,k|N i

j,k, t0,j , tk,n)
p(t0,j , tk,n)p(tj,k|t0,j , tk,n)

p(N i
j,k|t0,j , tk,n) ⇡ p(N i

j,k) = p(N i)

Assume  

p(tj,k|t0,j , tk,n) ⇡ p(tj,k|tj�2, tj�1) =
k�1Y

a=j

p(ta|ta�2, ta�1)

=> p(N i
j,k|t0,n) ⇡

p(N i)pin(N i
j,k)

Qk�1
a=j p(ta|ta�2, ta�1)

Figures of Merit Using Boundary Statistics

Left boundary trigram estimate

  
  
  

p(N i
j,k|t0,n) =

p(N i
j,k, t0,n)

p(t0,n)
=

p(N i
j,k, t0,j , tj,k, tk,n)

p(t0,j , tk,n)p(tj,k|t0,j , tk,n)

⇡
p(N i

j,k|t0,j , tk,n)pin(N i
j,k)

p(tj,k|t0,j , tk,n)

Assume: p(tj,k|t0,j , tk,n) ⇡ p(tj,k|tj�2, tj�1)

p(N i
j,k|t0,j , tk,n) ⇡ p(N i

j,k|tj�1) left boundary model

p(N i
j,k|t0,n) ⇡

p(N i
j,k|tj�1)pin(N i

j,k)
p(tj,k|tj�2, tj�1)

=>

Figures of Merit Using Boundary Statistics

p(N i
j,k|t0,n) =

p(N i
j,k|t0,j)p(tj,k|N i

j,k, t0,j)p(tk|N i
j,k, t0,k)p(tk+1,n|t0,k+1, N i

j,k)
p(t0,j)p(tj,k|t0,j)p(tk|t0,k)p(tk+1,n|t0,k+1)

Assume depends only on the previous tags tk+1,n

=> p(N i
j,k|t0,n) ⇡

p(N i
j,k|t0,j)pin(Nj,k)p(tk|N i

j,k, t0,k)
p(tj,k+1|t0,j)

⇡
p(N i

j,k|t0,j)pin(Nj,k)p(tk|N i
j,k)

p(tj,k+1|tj�2, tj�1)

Open Problem: Bottom-up or Top-down Inference

Which inference is more suitable?
This is object-dependent

Embedding the integrated models into an And-Or graph

6

8

1 10

some graph configurations generated by the And - Or graph

< B , C >

< C , D >

< C , D >

< B , C >

< N , O >

A

B

K J I

P

G F E

D C

N L

T

H

S R Q

O

1 8 7 6 5 4 3 2 11 10 9

and - node
or - node
leaf node

M

U

< B , C >

< L , M >

2

4

9

9

< C , D >

Representing a grammar by and-or graph

A

B C

a ccb

Or-node

And-node

leaf -node

Representing a grammar by and-or graph

Or-node

And-node

leaf -node

B C

a fcb

A

L(A) = { ... }
d e

An example: the clock category

Top-down / Bottom-up Inference at all levels

Image parsing by DDMCMC, Tu et al, 2002-05

Objective: Constructing parse graphs on-line !

A simpler and more flexible graph grammar

One terminal sub-template
--- a planar rectangle in 3-space

Han and Zhu 2005

Six grammar rules which can be used recursively

r1
S ::= S

m

r2
::=A A

A1
m

scene

line

r3
::=A A

A11
mxn

mesh

AmA2

r4
::=A A

A1

nesting

A2

r6
::=A A

cube

A1

A2
A3

r5
::=A

instance
A

A1
A2

A3

line production rule

A1 A2

nesting production rule

A1
A2

A3

cube production rule

rectangleA1 A2 Am A1m

A2m a

Two configuration examples

Bottom-up detection (proposal) of rectangles

independent rectangles

line segments in three groups

Each rectangle consists of two pairs of line segments that share a vanish point.

top - down
proposals

bottom - up
proposals

rule
r 3

rule
r 6

rule
r 4

A C B

S

configuration

parsing graph

Top-down / bottom-up inference

Each grammar rule is an assembly line
and maintains an Open-list and Closed-list of particles

A particle is a production rule partially matched, its probability measures
 an approximated posterior probability ratio.

r2

r6

r4

r3

r5

Example of top-down / bottom-up inference

a) edge map b) bottom-up proposal c) current state

d) proposed by rule 3 e) proposed by rule 6 f) proposed by rule 4

Results

Edge map

Rectangles inferred

(Han and Zhu, 05)

Sep 14, 2005

Likelihood model based on primal sketch

Synthesis based on the parsing model

Synthesis based on the parsing model

Parsing rectangular scenes by grammar

How much does top-down improve bottom-up?

In the rectangle experiments:

β-channel

β+γ - channels

Han and Zhu, 2005-07

