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Two objectives of learning 

1, Explaining the data 
      ---  Generative approaches 
      ---  Hierarchy,  dictionary 
      ---  Max. likelihood,  Min KL-divergence 
 
2, Minimize the loss --- driven by task   
       ---  Discriminative approaches 
       ---  long features 
       ---  Max margin, Min loss  

      Both have some merits.  In this lecture, we focus on learning hierarchical  
grammatical models to explain the data.   One can boost the performance by 
Structured-SVM once the task and loss functions are known.  



Outline of this lecture 

 1, Learning And-Or Trees from data matrix 
                case study 0: toy example 
                case study 1:  object S-AOT  
                case study 2:  event T-AOT 
                case study 3: causal C-AOT (in lecture 8) 
 
  2,  A unifying principle: learning by information projection 
            --- pursuit of stochastic sets in the image universe 
        
  3,  PAC-learning: the learning rate of AOG models 



1,  Case study 0: a toy example 
Suppose we design a 2-layer And-Or graph (rewritten as tree) which generates many examples, 
  Can we recover this AOG by unsupervised learning?  
  What are the key factors affecting learning accuracy? 



Phrase instances –sampled from the AoG 
Noisy letters of random length s are inserted between words. 



 
Issue: large redundancy and ambiguities  
due to partition problem at this level. 

Top 3-letter or 4-letter words and their 
frequencies. 

Method:  we slide windows of length =3 or 4 on the text and  
count the word frequency (2nd coloumn), hoping that the  
background/noise will be averaged out while the  
foreground/signal will pop-out.   The 3rd column is the information 
Gain measure in information projection (talk later)  

We treat them as our first level dictionary ∆(1) . 



Top 6-letter ~ 8-letter words and their frequency 

The top few words recover the true words 
in the generating grammar. 

We replace the letter sequence in ∆(1) by symbols and thus shorten the sentences. 
Then we slide windows of length 2 on the shortened sentences to get the word account. 



Two graph compression operators to regularize the AOT 
1, Lossless compression. Should always perform this operation. 

2, Lossy compression. Should perform this operation only when loss is small. 



Underlying AoT 

Successful recovery. 

After the lossless compression. After the lossy compression. 

Two graph compression operators to regularize the AOT 



The recovered grammar ! 
We continue this process from ∆(1), ∆(2), ∆(3), then we work downward to 
remove the redundancy by the two operators, to get an AOT below. 

Ref:  Si and Zhu, “Learning And-Or Templates for Object Recognition and Detection,” 2011-12. 



Key-factors affecting the learning accuracy 

ROC 

Comparing the learned dictionary vs. the underlying (true) dictionary 

AUC as a function of s and 
sample number n. 

Separation parameter s. 

Ref:  Si and Zhu, “Learning And-Or Templates for Object Recognition and Detection,” 2011-12. 



Evaluation 

AoT1 AoT2 

Dis( ) = ? , 

How to estimate the distance between two AND-OR templates? 

Estimated using Monte-Carlo method, i.e. integration by importance sampling: 



Complexity parameter α : controlling model complexity in graph compression. 

To investigate the affect of parameter α and training sample size n on the model 
generalizability, we perform repeated cross validations. The result is shown in the 
Figure (left). The  horizontal axis is the  logarithm of α which is  sampled at  seven 
points (10^−6 , 10^−3 , 10^−2 , 0.1, 0.2, 0.5, 0.8), and the vertical axis is the distance 
between the learned model AoT α and the true model AoT∗. 

The right figure shows at what sample size n and what α values can we successfully 
recover the generating grammar.  

Evaluation 
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Data matrix 

 Case study 1: Learning AOT for objects 

Dictionary of atomic elements (sketch, texture, flatness, color) 
D 



Recursive block pursuit 

15 



Block pursuit: geometric OR nodes 

Initially collected patches 

Transformed patches 

Learned template 
One example: bear’s ear 

There are other hidden variables besides the rows of the block: 
geometric transformation of the block template when matched to 
each image instance. 

Geometric OR 



Cases of Graph Compression 
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Learned And-Or templates for animal faces 

Ref:  Si and Zhu, “Learning And-Or Templates for Object Recognition and Detection,” 2011-12. 



Example: learned horse AOT 

 AND-OR Template for articulated horses. 



Example: learned egret AOT  
in comparison to the Deformable parts model 



Go beyond classification and detection. 
Comparison on locating key points using the learned parts. 



Some neurons in the pre-motor area encode actions 

Mirror neurons: firing when performing action or seeing 
other people performing the action.  

Case study 2, Unsupervised learning of actions/events 



Some of the 
learned 
 atomic actions by  
 pursuing the  
co-occurrence of 
relations. 

We ground actions as spatio-temporal relations between 
body parts and objects in the scene. 

Ref:      M.T. Pei, Z.Z. Si, B. Yao, and S.C. Zhu , “Video Event Parsing and Learning with Goal and 
              Intent Prediction,” 2012. 



Block for temporal co-occurrence patterns 

Si, Pei et al ICCV 2011 



Learned And-or graph for events in office scenes.  



2, The principle of Information projection 
      ----Pursuit of stochastic sets in the universe of images 

•  High dimensional Ensembles by statistical physics and MRF models; 
 
•  Low dimensional subspace or manifolds in sparse coding; 
 
•  Language by grammar that compose the above primitive spaces. 

Recall that, in lecture 2, we have discussed that visual concepts 
  can be defined in three types of stochastic sets 

Therefore, the objective of generative learning is to discover these 
 stochastic sets in the vast universe of images. 



Pursuit of stochastic sets in the universe of images 

1,  q = unif()  

2,   q =  δ() 

f : target distribution;     p:  our model;    q:  initial model 

   image universe: 
   every point is an image. 

 model  ~  image set  ~  manifold  ~  cluster 

Two canonical cases:  1) Push for texture;  and 2) pull for texton.  



 We pursue a series of models p to approach a underlying “true” 
probability  f 

Model pursuit by information projection 

At each step, we augment the current model p to a new model  

Subject to a projection constraint:  

Given only positive examples from a class c 



Solving the constrained optimization problem leads to the Euler-Lagrange equation 

Manifold pursuit by information projection 

where  

. 

For q being a uniform distribution, we have   



Information projection DellaPietra, DellaPietra,Lafferty, 97 
Zhu, Wu, Mumford, 97 

 We pursue a series of models p to approach a underlying “true” 
probability  f 

It converges monotonically, as long as we have a sufficient set of features 
    to choose from.   Just like Adaboost converges as long as you have effective 
  weak classifiers. 



 

max-step: choosing a distinct statistics to augment the structure 
 

The key issue: what and where to look at ? 

Information projection 

min-step:  computing the parameter given the selected feature constraint,  

The algorithm iterates two steps 



Structure learning is like IQ test 

Deep issues: 
 
      tabula rasa learning?  
       Nature vs. Nurture 

Ref: Susan Carey, The origin of Concepts, Oxford Univ. Press, 2009 

What and where do you look? 



3, Theoretical topics in the space of AOG’s  
 

This is a theoretical topic of some ongoing research by Prof. Adrian Barbu at 
 Florida State Univ. --- a former student of mine and Maria Pavlovskaia – a  
 current student. 
 
If we believe AOG is the proper mathematical model, then various objects, 
scene, and events are instances of the space of AOG’s. Studying the 
properties of this space (hypothesis or model space) will lead to answers  
For many fundamental questions, such as, 
 
1, The learning rate---how many examples are needed to learn a concept; 
2, Learnability and identifiability; 
3, Transfer, curriculum, and analogical learning; 
4, Regimes of models/patterns in the space. This will explain why certain 
algorithms, like Adaboost, SVM, decision trees, work so well in one regime 
but fail in others.  
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