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Two objectives of learning

1, Explaining the data
--- Generative approaches
--- Hierarchy, dictionary -
--- Max. likelihood, Min KL-divergence /

2, Minimize the loss --- driven by task
--- Discriminative approaches
--- long features
--- Max margin, Min loss

Both have some merits. In this lecture, we focus on learning hierarchical
grammatical models to explain the data. One can boost the performance by
Structured-SVM once the task and loss functions are known.



Outline of this lecture

1, Learning And-Or Trees from data matrix

case study 0: toy example

case study 1: object S-AOT

case study 2: event T-AOT

case study 3: causal C-AOT (in lecture 8)

2, A unifying principle: learning by information projection
--- pursuit of stochastic sets in the image universe

3, PAC-learning: the learning rate of AOG models



1, Case study O: a toy example

Suppose we design a 2-layer And-Or graph (rewritten as tree) which generates many examples,
= Can we recover this AOG by unsupervised learning?
= What are the key factors affecting learning accuracy?
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Figure 1. A toy AND/OR graph for completing a sentence,
such as “hamster is now jumping”. There are certain con-
straints in forming the sentence, such as spring should not
be cold or leaving. Shaded circles denote AND nodes.
Empty circles means OR nodes. Shaded rectangles are
terminal nodes.



Phrase instances —sampled from the AoG

Noisy letters of random length s are inserted between words.

rkspbwidfvghamster b x is nowtncyjholeavingpkqmlqzkgw
mpuhqgpkysdhspringjcgr is nowhuyjrcomingwj qqptc
fyglgvwwvvcogwintervkixce as nowkztedsleavingxtdlg qt
pojuptrjho hamsterdhypjaa is cowlhoadleavingciczedz hi
lzxnsvh dyhamsterqqdis nowmyqpzbcomingcu ybaf irfdhcy
| ygszzkzqhamsterandx is nowrvxzajleavingtdplhvyqjeqxowd
gexxttrqdot tuiwinterbsodvwas nowgjolzcomingmrgnjmgmddgxxizu
cgkkaekswinterfhsbb is nowtdyqdlleavingxctsqesc
spmdxqzh aspringgfesqi is now tcaycominggev ezeu
rimldbwdgowbtdawinterrusz is nowtgrgnqgleavingow nhstkb
horbsppwinterv m is nowympveeeavingrmikrzzjyhpz
lyrszvsdspringhysctcwas nownvgix comingxfbuxzg
nuxrptojhamsterlnworzvwas nowbo pnbcoming vvim ddozops x
ekhghtfats qwinterydwgznpwas nowcizleavingevjzit
ufjwauxov whamstercvaetwas noweuyyleavingmdzyrnaptdg
lukzjxpe puxbwinterdgiueagwas nowpdlrercomingsrvdgffg
bsxd xggefowinterxmsbzl is nowyryoleavingraa haxgczdnxrg
gyvmvtsoezpywunwinterjan is bevzdpwqfcomingqgbadpfvpptac
qqkw winterccxyawas nowvypvheqcomingzqn wkgwyyiu
rbppredkamkiludwinterr usjwas nowjwsleavingdjnejiuzsoa p

Table 1: The positive examples generated by the context free grammar. The
strings are of various lengths. Each string contains two words seperated by
random letters. The words “spring’, “winter”, “coming” “leaving”, “ham-
ster”, “is”, “was”, “now” share common prefixes or postfixes, such as “ing”

and “ter”.



Top 3-letter or 4-letter words and their
frequencies.

Method: we slide windows of length =3 or 4 on the text and
count the word frequency (2" coloumn), hoping that the
background/noise will be averaged out while the
foreground/signal will pop-out. The 3™ column is the information
Gain measure in information projection (talk later)

We treat them as our first level dictionary A™).

Issue: large redundancy and ambiguities
due to partition problem at this level.
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Top 6-letter ~ 8-letter words and their frequency

We replace the letter sequence in A by symbols and thus shorten the sentences.
Then we slide windows of length 2 on the shortened sentences to get the word account.

The top few words recover the true words
in the generating grammar.

is now | 0.012 | 0.086
was now | 0.011 | 0.080
leaving | 0.010 | 0.067
coming | 0.011 | 0.065
winter | 0.009 | 0.054
hamster | 0.008 | 0.053
s nowi | 0.008 | 0.051
eavingo | 0.005 | 0.034

Table 3: The proposed dictionary A(2) for words composed by elements in
the children dictionary AW We only show the top ones. Side by side we
list the information gains of corresponding word roots, up to a constant
multiplicant.



Two graph compression operators to regularize the AOT

1, Lossless compression. Should always perform this operation.

merge

—

A B A C A B C

2, Lossy compression. Should perform this operation only when loss is small.

compress
‘ =
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Two graph compression operators to regularize the AOT

After the lossless compression.
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(a) memorization AND-OR. Template

After the lossy compression.

coming leaving jurmping

(b) compressed AND-OR Template

Successful recovery.

spring isnow wasnow winter isnow wasnow hamster isnow was now

Underlying AoT



The recovered grammar !

We continue this process from A®, A@, AB), then we work downward to
remove the redundancy by the two operators, to get an AOT below.
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Ref: Siand Zhu, “Learning And-Or Templates for Object Recognition and Detection,” 2011-12.



Key-factors affecting the learning accuracy

Separation parameter s.

Comparing the learned dictionary vs. the underlying (true) dictionary
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AUC as a function of s and
sample number n.

Ref: Siand Zhu, “Learning And-Or Templates for Object Recognition and Detection,” 2011-12.



Evaluation

How to estimate the distance between two AND-OR templates?

Dis(

N
|
D

AoT1 AoT?2

Estimated using Monte-Carlo method, i.e. integration by importance sampling:

‘ p(w:; AoT
}L(AOTl |J—"1GT2] = Z,‘P‘(WQ AoTy)log iEw ﬁDTS

w 1s the co-appearance configuration of blocks



Evaluation

Complexity parameter a : controlling model complexity in graph compression.
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To investigate the affect of parameter a and training sample size n on the model
generalizability, we perform repeated cross validations. The result is shown in the
Figure (left). The horizontal axis is the logarithm of a which is sampled at seven
points (10*-6, 10*-3, 10*-2, 0.1, 0.2, 0.5, 0.8), and the vertical axis is the distance
between the learned model AoT a and the true model AoT*.

The right figure shows at what sample size n and what a values can we successfully
recover the generating grammar.



Case study 1. Learning AOT for objects

Data matrix
D

Dictionary of atomic elements (sketch, texture, flatness, color)
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Recursive block pursuit
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Block pursuit; geometric OR nodes

There are other hidden variables besides the rows of the block:
geometric transformation of the block template when matched to

each image instance.
Geometric OR

)
< t‘ —=
One example: bear’s ear

Initially collected patches l §

Transformed patches

Learned template
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Cases of Graph Compression Q, - g)\
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Learned And-Or templates for animal faces

Example image data

Typical examples of
corresponding branches
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Ref: Siand Zhu, “Learning And-Or Templates for Object Recognition and Detection,” 2011-12.



Example: learned horse AOT
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Weizmann horse dataset.



Example: learned egret AOT
In comparison to the Deformable parts model




Go beyond classification and detection.
Comparison on locating key points using the learned parts.

keypoints
Fig. 23. Measuring the accuracy object localization with key /
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Case study 2, Unsupervised learning of actions/events

Some neurons In the pre-motor area encode actions
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Mirror neurons: firing when performing action or seeing
other people performing the action.



We ground actions as spatio-temporal relations between
body parts and objects In the scene.

Some of the
learned

atomic actions by
pursuing the
co-occurrence of
relations.
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Figure 4: Some atomic actions. Each atomic action i1s defined on a set of grounded relations shown by 2 half circles. Unary
relations 'Bend’ and 'On' are defined in Figure 2. Binary relations 'Near’ and 'Touch’ are defined in Figure 3. For the
atomic action 'ShakeHands’, when P1 is considered as the agent, P2 is regarded as object and vice versa. See [27] for a more
sophisticated system to detect agent poses and interactions with the scene.

Ref: M.T. Pei, Z.Z. Si, B. Yao, and S.C. Zhu , “Video Event Parsing and Learning with Goal and
Intent Prediction,” 2012.



Block for temporal co-occurrence patterns

t=1 t=2 t=T
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Si, Pei et al ICCV 2011



Learned And-or graph for events in office scenes.




2, The principle of Information projection
----Pursuit of stochastic sets in the universe of images

Recall that, in lecture 2, we have discussed that visual concepts
can be defined in three types of stochastic sets
» High dimensional Ensembles by statistical physics and MRF models;
* Low dimensional subspace or manifolds in sparse coding;

e Language by grammar that compose the above primitive spaces.

Therefore, the objective of generative learning is to discover these
stochastic sets in the vast universe of images.



Pursuit of stochastic sets in the universe of images

Two canonical cases: 1) Push for texture; and 2) pull for texton.

f . target distribution;  p: our model; q: initial model

q=Do2pPL—> 2P to f

image universe:
ary point is an image.

model ~ image set ~ manifold ~ cluster



Model pursuit by information projection

Given only positive examples from a class ¢

0F =17 i=1.2,.., M7}~ f(I)

We pursue a series of models p to approach a underlying “true”
probability f

q=po—>pPL—=> " —~>px to f
At each step, we augment the current model p to a mew model
hy =argmax KL(f [p) — KL(f |ps)
= arg max KL (p; | p)

Subject to a projection constraint:
E, [hy(D] = Ef[h, (D] = h.

h, (I) is a feature statistics of image I



Manifold pursuit by information projection

Solving the constrained optimization problem leads to the Euler-Lagrange equation

py = argmin .rF'+ () log I;-F[%] dl +:':'=+[.r ps(Dh (DdI— E+:| + :'J'*.:..rF'+ (I)dI— 1]

Pi(1; 0)) = ijpk_l([; @k_l)e—lkhk(l)
1 k
K i=1
where

2y =249 ZynZyy O = (AL Ay)

For g being a uniform distribution, we have g() = zi



Information projection

DellaPietra, DellaPietra,Lafferty, 97
Zhu, Wu, Mumford, 97

We pursue a series of models p to approach a underlying “true”
probability f
q=po—>pPL—=> " —~>px to f

KL(f | p) = KL(f | p+) + KL(p4| p)

It converges monotonically, as long as we have a sufficient set of features
to choose from. Just like Adaboost converges as long as you have effective
weak classifiers.



Information projection

The algorithm Iterates two steps

min-step: computing the parameter given the selected feature constraint,

Ay =argmin KL(p, | p)

max-step: choosing a distinct statistics to augment the structure

hi = argmax KL (p; | p)

The key issue: what and where to look at ?



Structure learning Is like 1Q test

14. Which is the odd one out?

\ B C D
36. Which of the boxes ® O
below is most like P i
the box on the right? E’}, O
®) ; o : qu 9 |
e° 2.9 |®°0l||gO
®°e ©:-0 o @ ®.0
A B C D

What and where do you look?

Deep issues:

tabula rasa learning?
Nature vs. Nurture

Ref: Susan Carey, The origin of Concepts, Oxford Univ. Press, 2009



3, Theoretical topics in the space of AOG’s

This is a theoretical topic of some ongoing research by Prof. Adrian Barbu at
Florida State Univ. --- a former student of mine and Maria Pavlovskaia — a
current student.

If we believe AOG is the proper mathematical model, then various objects,
scene, and events are instances of the space of AOG’s. Studying the
properties of this space (hypothesis or model space) will lead to answers
For many fundamental questions, such as,

1, The learning rate---how many examples are needed to learn a concept;
2, Learnability and identifiability;

3, Transfer, curriculum, and analogical learning;

4, Regimes of models/patterns in the space. This will explain why certain
algorithms, like Adaboost, SVM, decision trees, work so well in one regime
but fail in others.
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