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Spatial patterning often occurs in ecosystems as a result of a self-
organizing process caused by feedback between organisms and
the physical environment. Here, we show that the spatial pat-
terns observable in centuries-old Balinese rice terraces are also
created by feedback between farmers’ decisions and the ecology
of the paddies, which triggers a transition from local to global-
scale control of water shortages and rice pests. We propose an
evolutionary game, based on local farmers’ decisions that predicts
specific power laws in spatial patterning that are also seen in a
multispectral image analysis of Balinese rice terraces. The model
shows how feedbacks between human decisions and ecosystem
processes can evolve toward an optimal state in which total har-
vests are maximized and the system approaches Pareto optimal-
ity. It helps explain how multiscale cooperation from the commu-
nity to the watershed scale could persist for centuries, and why
the disruption of this self-organizing system by the Green Revolu-
tion caused chaos in irrigation and devastating losses from pests.
The model shows that adaptation in a coupled human–natural
system can trigger self-organized criticality (SOC). In previous
exogenously driven SOC models, adaptation plays no role, and no
optimization occurs. In contrast, adaptive SOC is a self-organizing
process where local adaptations drive the system toward local and
global optima.

self-organization | criticality | irrigation | evolutionary games |
Pareto optimality

The geometric precision of Balinese rice terraces has inspired
generations of postcard photographers. Viewed from above,

a changing mosaic of colors appears: green when the rice is
young, yellow as it nears harvest, silver when the paddies are
flooded, and brown when they are drained. These colors are
not uniform across the island, because Bali is an equatorial
island with only two seasons, wet and dry. Consequently, farm-
ers can plant their crops at any time, although they avoid har-
vesting in the rainy season. The colored patches that make up
the mosaics are visible in Google Earth. Like many natural phe-
nomena, patches show a characteristic power-law distribution
of sizes. However, in this case, the patches are created by the
farmer’s decisions about when to synchronize irrigation sched-
ules with their neighbors: Each patch displays the outcome of
these choices. Adjacent patches tend to be correlated. This cor-
relation weakens with distance, a relationship that also follows a
specific power law (Fig. 1). To discover why harvests approach
a maximum when both the size distribution of patches and the
corresponding correlation functions fit power-law distributions,
we need a model that relates the decisions of the farmers to the
consequences for irrigation flows and rice growth.

In Bali, water is regarded as a public good, the gift of the
Goddess of the Lakes. Rice is grown in paddy fields fed by irri-
gation systems dependent on rainfall. Rainfall varies by season
and, in combination with groundwater inflow, determines river
flow. By virtue of their location, upstream farmers can influence

how much water reaches their downstream neighbors. Across
the island, farmers recognize two management systems. In tulak
sumur (“reject the wellspring”), everyone is free to plant when-
ever they like, which gives upstream farmers an advantage over
their downstream neighbors. Alternatively, in kerta masa (“law-
ful/good timing”), farmers agree to adopt synchronized irrigation
schedules.

Kerta masa is sustained by local water-user groups called
subak, which have existed since the 11th century (1). Irrigation
schedules are chosen by consensus in subak meetings. In prior
research on a group of 10 subaks practicing kerta masa, we mea-
sured irrigation flows and found that they correlated perfectly
with the agreed-upon irrigation schedules (SI Appendix, Fig. S3).
Kerta masa tends to equalize rice harvests, and, in a typical sur-
vey, 39 of 40 farmers agreed that their harvests are about the
same as those of their neighbors (SI Appendix, Table S1) (2).
However, to sustain kerta masa, upstream farmers must give up
their advantage in irrigation control. How, then, did it become
the norm in Bali, whereas tulak sumur is regarded as a rare and
problematic condition?

To find out, in prior research, we modeled the emergence
of cooperation in a simple game involving only two rice farm-
ers, one upstream from the other (2). We allow the upstream
farmer to have first claim on any water in the system. To simplify
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Fig. 1. (A) Location of study sites: six randomly selected rice-growing regions of Bali. Photosynthetic activity was analyzed using multispectral and
panchromatic satellite images to classify four stages of rice growth in the terraces, which appear as differently colored patches. (B) Image analysis of
rice growth (indicating synchronized irrigation schedules in the region of Gianyar). The four colors of the patches indicate the four stages: growing rice
(yellow), harvest (green), flooded (red), drained (blue). (C) Cumulative distribution of the patch sizes P(> s) for Gianyar (red circles) and for our model
results (blue squares). (Inset) All 13 observations at the six regions, indicating power-law behavior, with an exponent around α≈ 1. (D) Correlation functions
C(d) of the image (planting regions only) as a function of distance for Gianyar (red) and the model (blue). The slow decay (power law) indicates long-range
correlations, or “system-wide connectivity” of patches. (Inset) All 13 observations. See SI Appendix for details.

matters, suppose that the farmers must choose one of two pos-
sible dates, A or B, on which to plant their crops. We assume
that the water supply is adequate to accommodate the needs of
one farmer during any given period but is insufficient if both
decide to plant simultaneously. The maximum harvest is 1. Let
δ (0<δ< 1) give the crop loss due to reduced water inputs expe-
rienced by the downstream farmer if he plants at the same time
as the upstream farmer. However, harvests are also affected by
rice pests (3). If the farmers plant at different times, they will
harvest at different times. This schedule provides an opportu-
nity for rice pests to migrate between the fields. Let ρ (0<ρ< 1)
give the crop loss due to pest migration between the fields under
these conditions (for simplicity, we assume that there is no pest
damage if the crops are planted simultaneously).

If the upstream farmer is not very worried about damage from
pests, he will have little incentive to synchronize his irrigation
schedule with the downstream farmer. This situation results in a
mixed strategy (one player chooses A and the other chooses B),
corresponding to tulak sumur. The expected aggregate crop yield
for both farmers from the mixed strategy is 2− δ/2− ρ. When
ρ> δ/2, both farmers will obtain better harvests by cooperating
in a single irrigation strategy (either A or B). This agreement
holds because pest damage is borne by both farmers whereas
water damage impacts only the downstream farmer; thus aggre-

gate yields increase by coordinating when pest damage is at least
half as bad as water damage. In this case, corresponding to kerta
masa, it is in the individual interest of both farmers to cooperate
(formally, this is known as a coordinated equilibrium).

Thus, the threat of increased pest damage from downstream
neighbors provides an incentive for upstream farmers to syn-
chronize their irrigation schedules. We tested the salience of
this incentive in a survey of 150 farmers in 10 subaks, to whom
we posed the question, “Which is worse, pest damage or irriga-
tion water shortages?” In each subak, five farmers were selected
whose fields are located in the upstream part of their subak, five
more from the middle of the subak, and the last five from the
downstream area of the subak. The results showed that upstream
farmers worry more about pests, whereas downstream and mid-
dle farmers are more concerned with water shortages (Pearson
χ2 14.083, P < 0.001) (2).

Thus, in the two-player game, whether cooperation emerges
depends on the trade-off between pest damage ρ and water
shortages δ, both of which are fixed and known to the players
in advance. In reality, for any farmer, ρ depends on both the
intrinsic capacity of endemic pests to cause damage and whether
neighboring farmers choose to control the pests by synchronizing
irrigation. Similarly, δ depends on both the inflow of irrigation
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water into the subak and the scale at which groups of farmers syn-
chronize irrigation. Consequently, the pest–water trade-off for
each farmer varies depending on where his farm is located and
the outcome of the irrigation schedules chosen by his neighbors.
Whether both farmers choose to cooperate (synchronize irriga-
tion) depends on the magnitude of ρ and δ.

To explore how patterns of irrigation scheduling emerge from
this mutual dependence, we created an adaptive version of the
game in which farms are embedded on the sites of an L×L lat-
tice, with dimension L=100. Parameters a and b specify the
relative weights of pest and water stress, respectively, for the
entire lattice and are set in advance. The lattice represents a rice-
growing region such as shown in Fig. 1B.

This model proceeds through a process of trial-and-error
adaptation. Losses from water stress are calculated based on
the distribution of irrigation schedules for the entire lattice: The
fewer the farmers following a given schedule, the more water
they have to share. However, this reward for asynchronous irri-
gation is balanced by the need to reduce losses from pests,
which depends on the fraction of neighboring farmers (fp) within
a given radius (r) that synchronize their irrigation schedules.
When pest damage is at least half as bad as water damage, does
cooperation spread and do aggregate harvest yields increase?

The model is initialized with random irrigation patterns for
all sites at t =0, when every farmer i chooses one of four pos-
sible irrigation schedules Ci with probability 1/4. At the end of
a time step (representing one simulated irrigation cycle), each
farmer compares his harvest with those of his closest neigh-
bors, and uses this information to choose his irrigation schedule
for the next cycle (Fig. 2). Because the farmers do not know ρ
and δ in advance, they must guess. Anticipating future pest out-
breaks or water shortages is challenging, and the actual decision-
making process in subaks typically involves lengthy discussions
(3, 4). Irrigation flows along the tiny canals that connect adja-
cent fields are also complex, involving bargains similar to the
game described above. We do not attempt to replicate this level
of complexity in the model. Instead, we implement very simple
strategies to discover whether they are sufficient to enable suc-
cessful adaptation (Fig. 2). Once the decision rule and the back-
ground pest and water levels are determined, the model proceeds
in the following steps:

i) Assume we are at the beginning of time step t +1. Calcu-
late the rice harvest for each individual farmer i by debiting
his losses from pest damage and water stress, according to
H i(t+1)=H0 − a/0.1 + f ip (t)− b f iw (t), where H0 is a con-

Fig. 2. Update rule for farmer i. Colors denote irrigation schedules. For
example, green might signify planting in January, and blue might signify
planting in March. At time t + 1, farmer i compares his harvest with those
of his four closest neighbors at time t. Because the red schedule produced
the best harvests, he adopts it for the next cycle. This update corresponds to
step iii in the model.

stant representing the initial harvest before loss. Here f ip (t)
denotes the fraction of neighbors of farmer i within a radius
r who share the same cropping pattern as i at the previous
time step t , which reduces local pest damage, and f iw (t) is
the fraction of all lattice sites that have the same cropping
pattern as i . The number 0.1 in the formula is to ensure that
Hi is positive. The parameters a and b specify the relative
weights of the pest loss and water stress, respectively. We set
H0 =5 and r =2 (lattice units) for all simulations. Details
are provided in SI Appendix.

ii) Pick one specific farmer i randomly.
iii) Farmer i compares his harvest H i(t +1) with the harvests of

his four nearest neighbors and copies the irrigation schedule
of one or more neighbors according to the decision rule (Fig.
2). In the simplest case, it is the neighbor who had the best
harvest in the previous irrigation cycle j : Ci(t + 1)=Cj (t)
(Fig. 3). For an explanation of the reasons for the difference
between these decision rules and the game, see SI Appendix,
Game and Lattice Models.

iv) Pick next farmer until all are updated (synchronously).
v) For a small fraction of lattice sites, the irrigation sched-

ules are randomly updated, to simulate empirically observed
nonconformity (see SI Appendix).

vi) Perform the next time step.
vii) Repeat for more time steps until harvests converge to

maximum.

Model Results
The model evolves through a process of trial-and-error adapta-
tion by the farmers. At first, in the initial random state (t =0),
the correlation between farms is close to zero (Fig. 3A). What
happens next depends on the ecological parameters pests (a)
and water stress (b), and on the decision rule followed by
the farmers. There are three trivial attractors (“phases”) (SI
Appendix, Fig. S4): (i) If water stress is negligible (b� 1) even-
tually all farms adopt the same irrigation schedule to control
pests, resulting in a single uniform patch that spans the entire
lattice. (ii) If b> 20a , water stress dominates, and many small
patches appear; this increases the variance of irrigation sched-
ules, reducing water stress, but allows pests to migrate between
adjacent patches. (iii) For b< 20a , after a very long transient
phase (thousands of cycles), a quadrant state is reached that sep-
arates the lattice into four quadrants with the same irrigation
schedules.

The fourth attractor, which is nontrivial, emerges at the
phase transition, exactly at the boundary where the water and
pest stress phases equalize. Correlation lengths increase as the
cycles of planting and harvest progress, and farms coalesce into
small, irregularly sized patches with identical irrigation sched-
ules. Patches form very quickly, as seen in Fig. 3A, and soon
become large enough to dramatically reduce pest damage. Uni-
formly short correlation distances indicate that the patches are
functionally independent: Each patch discovers its own solution
to the pest–water trade-off. Rice harvests improve rapidly within
the first time steps, and correlations between farms increase.
However, there is still some variation in harvests, so farms on
the borders of the patches continue to experiment with differ-
ent irrigation schedules. Adaptation ceases when no farm can
improve its harvest by changing its irrigation schedule. The geo-
graphic scale at which the pest–water trade-off is solved shifts
from many small independent patches (small correlation length)
to the entire lattice by (t =10), equivalent to 5 y of double crop-
ping. Subsequently there is little change: At t =400, the situation
is very similar to t =10. In Fig. 3B, we study the average har-
vest H =1/L2 ∑L2

i=1 H
i as a function of simulation time steps

(blue line, maximum strategy). We see that the maximum of H is
reached very soon.
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Fig. 3. (A) Evolution of the irrigation schedules from an initial random
configuration at t = 0 to t = 10, whereupon patch sizes become power-law
distributed. At t = 400, the irrigation patterns have changed very little and
approach a long-lived steady state distribution (see SI Appendix). (B) Effect
of decision rules on harvests. For the “maximum” rule (step iii, where farm-
ers choose the best harvest in their neighborhood), average harvests rapidly
increase as patch distributions shift to the power-law distribution (blue line).
A similar rapid increase occurs for the “majority” update strategy, where
farmers copy the schedule of the majority (red). To copy a random neigh-
bor’s irrigation schedule is the “random” strategy (pink) that leads to infe-
rior harvests. Extending this logic, when farmers update according to the
minority of their neighbors, harvests do not improve. The maximum possible
harvest is H = H0 = 5 in the absence of pest or water stress. In the simulation
shown, both pest and water stress are strongly present, a = 0.5 and b = 9.6.

In summary, cooperation quickly spans the entire lattice.
Harvests tend to increase and equalize, approaching Pareto
optimality at the phase transition where both the frequency dis-
tribution of synchronized irrigation patches and the correlations
between them become power laws. (Pareto optimality is a state
of resource allocation from which it is impossible to reallocate so
as to make any individual better off without making at least one
individual worse off.) In the phase diagram for the lattice model,
this balance occurs in a narrow region at the boundary between
the regions dominated by pests and water (SI Appendix, Fig. S4).
The resulting distribution of colored patches (synchronized irri-
gation schedules) on the lattice is readily comparable with the
satellite imagery.

Comparison with Satellite Imagery
We analyzed patch distributions in six rice-growing regions, ran-
domly selected on the basis of absence of cloud cover (Fig.
1A). Fig. 1B shows one of these regions (Gianyar) on a partic-
ular observation day. Four different phases of rice growth cor-
responding to the irrigation schedules are clearly visible in the
multispectral and panchromatic satellite images: growing rice,
harvest, flooded, and drained. Image analysis is based on mea-
suring photosynthetic activity; see Methods and SI Appendix. Fig.
1C shows the cumulative distribution function (red circles) of the
patch sizes s , as they are found in Fig. 1B (Gianyar region). It
shows a power-law distribution P(> s)∝ s−α with a tail expo-
nent of α=0.93(0.07); the SE is given in brackets. The patch
size distributions for all other regions at all observation times are
shown in Fig. 1C, Inset; corresponding exponents are fitted from
the data with a standard maximum likelihood estimator (see SI
Appendix) and are listed in SI Appendix, Table S2.

The cumulative patch size distribution is visible in the power
law (Fig. 1C). The model results (blue squares) for the phase
transition (when b/a ≈ 20 at t =400) closely matches the empir-

ical data (red circles), and would be very similar at t =10. Sim-
ilar agreement occurs in the correlation function C (d). For the
appropriately scaled model results (to match the length scales in
the satellite images and the model dimension), we find very simi-
lar functional dependence of the correlation function in Fig. 1D.
Both data and model show an approximate power-law decay in
the correlation function.

Correlation functions C (d) provide a second measure of the
scale of cooperation among farmers. In Fig. 1D (red) for Gian-
yar, we see that correlation functions decay slowly with distance:
The closer two patches are, the more likely they are to follow the
same irrigation schedule, indicating that all patches are linked.
Correlation functions decline as a power law. Thus, the state of
each patch affects all of the others, and the Gianyar rice ter-
races form an integrated (globally coupled) system; Fig. 1D, Inset
shows that this is true for all regions and observations. To quan-
tify the typical correlation length, we define it as the variance
of the correlation function; see Eq. 2 in Methods. For Gian-
yar, the correlation length turns out to be ε=373 m, spanning
all patches. The results for the other regions are found in SI
Appendix, Table S2.

We performed a systematic study of the dependence of the
average harvests H , the power-law exponents α, and the correla-
tion lengths ε on the parameters a and b. The results are shown
in Fig. 4. Here, we observe the emergence of critical behavior
at a region where water stress and pest stress balance as adapta-
tion progresses in the simulation. This region is highlighted with
white lines in Fig. 4B. A comparison with the observed data for
the power-law exponent α in SI Appendix, Table S2 suggests that
model results from this parameter region are compatible with the
empirical data. At the critical region, the entire system of farms
becomes correlated as global control emerges from simple local
interactions between farmers.

Discussion
We suggest that the dynamics captured in the lattice model
described above show that self-organized criticality (SOC) can
emerge from an adaptive process. The evidence that this find-
ing tells us something about the Balinese subak system is based
on the remarkable similarity of the distributions of patch sizes
and correlation distances in the satellite imagery and the model.
However, power-law distributions can occur for many reasons.
For example, they often occur in vegetation patches in dryland
ecosystems under stress (5–8). However, vegetation patches in
natural ecosystems are functionally similar, differing only in size.
For the vegetation patches that make up the mosaics of the rice
terraces, size matters, but so does the age of the rice crop in
each patch, which depends on the irrigation schedules selected
by the farmers. Any explanation for the observed power-law dis-
tribution of patches in the rice terraces needs to account for
this functional coupling of irrigation schedules and ecosystem
dynamics. Our adaptive SOC model tests the hypothesis that the
observed mosaic patterns might arise from the farmers’ efforts
to optimize the pest–water trade-off. The model shows that, if
the adaptive dynamics are driven by the pest–water trade-off,
there exist critical points where the power-law distribution is the
attractor. Because approximate Pareto optimality emerges at this
point, where the pest–water trade-off is optimized at all scales,
the model also suggests an explanation for the historical per-
sistence of this attractor. For these reasons, we suggest that the
emergence of power-law mosaics is not a purely biological phe-
nomenon but is the outcome of ongoing coupled human–natural
dynamical interactions. Two further assumptions of the model
can be evaluated with historical data.

First, the model assumes that subaks actively cooperate to
minimize losses due to pests and water shortages by synchro-
nizing their irrigation schedules. This assumption can be eval-
uated in light of historical evidence. From the ninth to the 14th
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Fig. 4. Effects of pest and water stress: model results as a function of
parameters a (pests) and b (water). (A) Average harvests. The maximum
possible harvest H0 occurs when a = b = 0. (B) Power-law exponent α of
the cumulative patch size distribution. The parameter region that matches
the observed slopes from the satellite imagery (SI Appendix, Table S2) is
indicated by the white line. (C) Correlation length ε. The parameter region
that matches the observed slopes from the satellite imagery (SI Appendix,
Table S2) is found around the line where b/a≈ 20, which is indicated with
the white line. Further computations show the same critical behavior at
b/a≈ 14 when m = 0.2, or at b/a≈ 24 for m = 0.05 (see SI Appendix, Fig.
S2). Thus, the emergence of critical behavior does not depend simply on a
and b but also on the constant m in the denominator of pest stress. In con-
clusion, taking results from exponents and correlation lengths, the param-
eter region that is compatible with observations is b/a≈ 20. Simulations
were performed with L = 100, r = 2, f = 0.05, and N = 4.

centuries AD, numerous royal inscriptions encouraged villagers
to construct irrigation systems, and left water management in
their hands (9). Because of Bali’s steep volcanic topography, “the
spatial distribution of Balinese irrigation canals, which by their
nature cross community boundaries, made it impossible for irri-
gation to be handled at a purely community level” (10). Later
on, both Balinese and European manuscripts describe coopera-

tive management by the subaks. Soon after the final conquest of
Bali by the Dutch in 1908, the colonial irrigation engineer tasked
with surveying Balinese irrigation wrote “if due to lack of water
not all areas can get water, then they create a turn-taking which
is decided upon during the monthly meetings” (11).

Second, the model predicts that rice yields will be optimized
by irrigation schedules that balance the pest–water trade-off for
multisubak groups. This prediction was inadvertently tested by
the introduction of Green Revolution agriculture to Bali in the
1970s. At that time, the subaks were required to give up the right
to set their own irrigation schedules. Instead, each farmer was
instructed to cultivate Green Revolution rice as often as possible,
resulting in unsynchronized planting schedules. By 1977, 70% of
southern Balinese rice terraces were planted with Green Revo-
lution rice. At first, rice harvests increased. Within 2 y, however,
Balinese agricultural and irrigation workers reported “chaos in
water scheduling” and “explosions of pest populations” (ref. 3,
p. 114). In 1985, the Department of Public Works in Tabanan
(the largest rice-growing regency in Bali) reported that “the fol-
lowing factors caused the explosion of pests and diseases: 1. In
areas with sufficient irrigation water, farmers are now plant-
ing continuously throughout the year. 2. In areas with insuffi-
cient water, farmers are planting without a coordinated sched-
ule. In other words, the farmers/subaks have ceased to follow
the centuries-old cyclical cropping patterns” (12). It was only
when farmers spontaneously returned to synchronized plant-
ing schemes that harvests began to recover, a point subse
quently acknowledged by the final evaluation team from the
Asian Development Bank (13).

Why was the functional significance of multisubak coopera-
tion not apparent to the Green Revolution planners? The model
suggests a possible explanation. Power-law distributions of dry-
land vegetation are comparatively obvious because the patches
differ only in size. However, adaptive management by the sub-
aks creates differentiated patches of varying size. The distinc-
tion is significant, not only because similar versus differenti-
ated patches occur for different reasons but also because it is
harder for observers to detect the connectivity of differentiated
patches. Perhaps partly for this reason, until now theoretical
models of coupled human–natural systems like rice terraces have
not anticipated or accounted for the emergence of global-scale
connectivity, focusing instead on local interactions. The model
also suggests an explanation for the widespread occurrence of
fragile kilometers-long irrigation systems linking multiple sub-
aks in the mountains of Bali. If management by the subaks were
purely local, leaving downstream subaks at the mercy of their
upstream neighbors, these irrigation works would be pointless,
and the total area of terraced fields on the island could never
have reached its historic extent (14).

In retrospect, it is not surprising that the concept of SOC
is relevant to the emergence of cooperation in human inter-
actions with ecosystem processes. Models of SOC were devel-
oped to understand how small-scale local interactions can transit
to integrated global connectivity, popularized by the compelling
sandpile example (15). These models often behave as if oper-
ating exactly at a phase transition. There, the systems become
“critical,” which means that correlations become long-range, and
effectively span the entire system, even though interactions only
happen at the local nearest-neighbor level.

In the subak lattice model, realistic configurations of patches
appear after just a few simulation steps. At the same time,
harvests approach Pareto optimality (if any farmer changes his
irrigation pattern, his rice harvests or those of other farm-
ers will decline). The total harvest of all farms is also maxi-
mized. The subak model does not evolve to full alignment of
behavior (except when b=0), which would minimize pest losses
but maximize water stress. Instead, at the critical point, the
adaptive update process of farmers continues to a point where
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correlations span the entire system. For this reason, we call the
model dynamics “adaptive SOC.”

We conclude with the question of whether these results are
likely to be unusual, perhaps even unique to Bali. The scope of
the model is limited by the physical geography of Bali. The four
crater lakes store rainfall that feeds the groundwater system, but
they have no river outlets. On the steep porous volcanic slopes,
rivers recharge very quickly. Irrigation systems consist of one to
six closely spaced weirs and springs that provide water for one or
more subaks. These local irrigation systems are functionally inde-
pendent: Although they remove most or all of the flow, a kilome-
ter or two downstream, it will be replenished from groundwa-
ter flows. Our model captures the adaptive process at this scale,
where local groups of farmers meet face to face to solve the pest–
water trade-off. The concept of emergent global-scale connectiv-
ity in our model, which we borrow from physics, does not refer to
all of the subaks on a river but to these smaller functionally inde-
pendent groups of subaks, such as those shown in Fig. 1B and SI
Appendix, Figs. S3 and S6–S17. This configuration of water dis-
tribution contrasts with a typical desert river, where the effects
of upstream irrigation may be felt far downstream.

If several subaks share water resources, their elected lead-
ers meet to negotiate irrigation schedules. Although this higher-
level coordination between subaks is not explicitly included in the
model, the decision-making process is the same: a trial-and-error
adaptation to reduce pest and water stress. These meetings take
place in regional water temples and make use of a sophisticated
permutational calendar to plan and implement staggered irriga-
tion schedules (14, 16). These cultural innovations undoubtedly
facilitate adaptation to changing pest–water dynamics. However,
the model does not require calendars or water temples; instead,
it helps to clarify the functional significance of these social con-
structs for sustaining approximate Pareto optimality. Our model
shows that the simple pest–water trade-off triggers continuous
transitions that turn adaptive agents on a two-dimensional lattice
into a coevolving system capable of solving the pest–water trade-
off by means of local decision-making. Unlike Gunderson and
Holling’s well-known model of adaptive cycles (17), here increas-
ing connectivity does not cause collapse but stabilizes at a scale-
free distribution of functionally varied patches. This is quite a
general result that may be common in coupled human–natural
systems. In any anthropogenic landscape, correlations between
patches will provide some information about the scale of human
management (see SI Appendix for code). If Bali’s subaks are not

unique, and adaptive SOC occurs in the management of the com-
mons elsewhere, it should be readily detectible from correlated
patch distributions.

Methods
Correlation Functions. We use a definition of correlation function C(d) that
is based on the mutual information between the cropping pattern X at site
i and the cropping pattern Y at site j, where the distance from site i to j
is d. The mutual information measures how much the knowledge of the
cropping pattern at one site reduces the uncertainty on the knowledge of
the cropping pattern at the other site. It is defined as

C(d) =
1

N

4∑
X=1

4∑
Y=1

Pd(X, Y) log2
Pd(X, Y)

Pd(X)Pd(Y)
, [1]

where Pd(X,Y) is the probability of cropping patterns X and Y occurring at
sites that are a distance d apart. Note that X and Y take values from 1 to
4 with ‘1 = green’, ‘2 = red’, ‘3 = blue’ and ‘4 = yellow’. Operationally, the
joint probability Pd(X, Y) is determined by taking the relative frequency of
the cropping patterns X and Y against all possible combinations of cropping
patterns between sites at a relative distance d. Note that the site here refers
either to a pixel in the satellite image or to a lattice site for the model. The
marginal probability of cropping pattern X (or Y) is Pd(X) [or Pd(Y)].N is the
normalization constant. It is equal to the Shannon entropy of the cropping
pattern X, i.e., N =−

∑4
X=1 P0(X) log2P0(X). It ensures that the correlation

is normalized, so that C(d = 0) = 1. We use this definition for the correlation
function because it is applicable to random variables in symbolic form. The
standard correlation function in two dimensions is inappropriate, as it needs
random variables in numeric form. However, these two definitions for the
correlation functions are closely related if the joint probability distribution
is Gaussian (18).

Correlation Length. The correlation length ε is defined as the variance (sec-
ond moment) of the correlation function from Eq. 1,

ε =

(∑
d d2C(d)∑

d C(d)

) 1
2
. [2]
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5. Solé RV, Manrubia SC (1995) Self-similarity in rain forests: Evidence for a critical state.
Phys Rev E 51:6250–6253.

6. Pascual M, Guichard F (2005) Criticality and disturbance in spatial ecological systems.
Trends Ecol Evol 20:88–95.
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Supplementary information

Game and lattice models. Here we explain the differences be-
tween the game used in reference [2] and the lattice model
used in the present analysis. We also discuss an important
variant of the lattice model. The game in [2] describes an ide-
alized situation involving two farmers, in which the upstream
farmer can control the flow to the downstream farmer. This
puts the downstream farmer at a disadvantage, a problem
known as the "tail-ender" problem in irrigation studies ∗ We
modeled the tail-ender problem on the lattice by introducing
a y-axis. The top of the lattice, y = L = 100, is at the wa-
ter source, the bottom, y = 0 is furthest downstream. Water
stress for a farm is defined as the fraction of cells at its y-
coordinate and higher upstream which follow the same irriga-
tion strategy. In the resulting model of upstream dominance,
harvests quickly decline along the downstream gradient and
barely change throughout the simulation (Fig. S1).

Fig. S1. Harvests through time in the upstream dominance model

However, the game shows that when pest damage is taken
into account as well as water stress, both upstream and down-
stream farmers have an incentive to cooperate (synchronize
irrigation). Thus for both upstream and downstream farm-
ers, whether or not cooperation is their best strategy depends
on the balance between pest and water stress. In the lattice
model described in the main text, with no y-axis, the adaptive
selection of irrigation schedules by individual farmers equal-
izes water sharing at the phase transition. The game and
the lattice model are not directly comparable, because pest
and water stress are calculated differently. But they offer
complementary insights: the game captures the logic of the
pest-water tradeoff, while the lattice shows how cooperation
can spread in a coupled system, where farmers adapt to the
pest and water stresses triggered by their own decisions.

∗"Whatever the reason, the tail-end problem is instantly recognizable in the field." Adrian Laycock.
2011. Irrigation Systems: Design, Planning and Construction. Oxfordshire, CABi.

In the two player game , coordinated cropping occurs be-
tween the two farmers when ρ > δ/2. In the L × L lattice,
pest stress ρ is computed as a/(m + fp) and water stress δ as
bfw. The constant m serves to bound the maximum possible
stress from pest at fp = 0. In other words, the maximum
pest stress is a/m. The variable fp gives the fraction of neigh-
bors of a farmer that share the same cropping pattern as him
within a radius r, while the variable fw defines the fraction
of all lattice sites that have the same cropping pattern as the
farmer (see also main text for the definition).
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Fig. S2. Power-law exponent α of the cumulative patch size distribution. As in Fig. 4,
the white line indicates region of critical behavior. The computation performed here
is for (a) m = 0.05, H0 = 20, and (b) m = 0.2, H0 = 2. The results yield
b/a = 24 for the white line of (a) and b/a = 14 for that of (b). The rest of the
simulation parameters are L = 100, r = 2, f = 0.05, and N = 4.

When m = 0.1, critical behavior occurs along the line
b/a ∼ 20 as discussed in the main text. Further computations
show the same critical behavior at b/a ∼ 14 when m = 0.2,
or at b/a ∼ 24 for m = 0.05 (see Fig. S2). Thus, the emer-
gence of critical behavior does not depend simply on a and b
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but also on the constant m in the denominator of pest stress.
Unlike the game, the lattice model demonstrates a phase tran-
sition that results from a balance between water dominance
versus pest dominance. Fig. S5b shows a set of patch size
distributions for b = 5 across the critical line, indicating that
when water stress dominates over pest stress, the patch size
distribution evolves to small patches (the tail of the distribu-
tion slopes down). When pest stress dominates over water
stress, the patch size distribution tends to have large patches
(the tail of the distribution slopes up). When neither water
stress nor pest stress is dominant, the result of the adaptive
process is a balance between small and large patches in the
form of a power law. At this point, correlation lengths diverge,
which implies a form of global control through local interac-
tion. Note that this phenomenon occurs for b/a ∼ 20 and also
for b/a ∼ 14 as well as b/a ∼ 24, i.e. the way the patch size
distribution changes across the critical line for b/a ∼ 20 is the
same as that for b/a ∼ 14 and b/a ∼ 24, all resulting from the
balance between water dominance versus pest dominance.

It is important to note that the model is effectively one-
dimensional with respect to the relative weight b/a (see SI:
The phase diagram of the model), which explains the appear-
ance of critical behavior along straight lines such as b/a ∼ 20.
The gradient of the line depends on the constant m in the de-
nominator of pest stress. The model results of the correlation
lengths are shown in Fig. 4c, where the white region indicates
the empirical range (see also Table S2). The parameter region
here is slightly narrower, and is also closely centered around
b/a ∼ 20. This critical region separates two phases of the
model, one where water stress dominates and the other pest
stress dominates. For further details see below, "Power-laws
at the critical transition line".

As the phase portrait shows, across a wide range of param-
eter values local adaptation will reduce both pest and water
stress, initially in local neighborhoods. At the phase tran-
sition, these stresses balance each other while harvests are
optimized (Fig. 4). The equalization of water sharing in the
lattice model is not assumed from the start, but emergent at
the phase transition within a certain parameter range † The
resulting mosaic of correlated irrigation schedules is consistent
with the satellite imagery.

Intra- and inter-subak coordination of irrigation. Both the lat-
tice model and the game were designed to be as simple as
possible, with the goal of exposing the underlying dynamics
of cooperation in the subaks. How well do they succeed?

In reality, Balinese farmers acquire the right to use irriga-
tion water by making offerings or prestations to the Goddess
of the Lake(s), who “makes the waters flow”. This principle
is given physical reality by means of proportional dividers in
the canals, which instantiate a fractional division of the water
flows in units called tektek, which determine the debt owed to
the Lake Goddess. For example, each subak in the congrega-
tion of the Masceti Pamos Apuh water temple (Fig. S3) has
the right to a share of water for so long as they contribute
offerings and support (soewinih) to the temple, proportional
to their tektek allocation. Within each subak, rights to a
proportional share of irrigation flow are based on smaller pro-
portional dividers, called tektek alit (small tektek), which are

† Irrigation schedules are randomly allocated to farms at the start of the simulation. Subsequently
they fluctuate during trial-and-error local adaptations until the model reaches its attractor. They
nearly equalize only at the critical transition and quadrant states.

Subaks Flow tektek
Jati 71 1.5
Bonjaka 102 2.5
Bayad 198 7.0
Tegal Suci 190 7.5
Pujung 198 8.0
Kedisan 214 8.0
Timbul & Calo 460 21.0
Jasan & Sebatu 386 16.0

Table S1. Average measured flow volumes at the intake to primary
canals (in liters per second) compared with water rights based on
proportional shares (tektek), July 1997 and 1998 (height of the dry
season) among the subaks of the Masceti Pamos Apuh. R = 0.997.
The average flow into each subak was 2.8 liters per second per
hectare with a standard deviation of 0.9 liters/sec/ha, [4].

equal for the entire subak. Farmers who fail to meet their
responsibilities for maintenance of the irrigation systems and
offerings to the Goddess are at risk having their water rights
terminated by a decision of the subak meeting.

Fig. S3. Locations and water relationships of subaks on the Petanu River that coordi-
nate irrigation schedules at the water temple Masceti Pamos Apuh. Measured flows
are shown in Table S1. All shown rivers flow south. A royal inscription provisionally
dated to the twelfth century mentions contributions made by the irrigation leaders
of several of them (Sebatu, Kedisan) to ceremonies in the village where their water
originates [1].

It is easy to verify the fairness of small tektek allocations
within subaks by checking the flows at the proportional di-
viders. Any deviation is an immediate cause of concern, and
will soon be corrected by the subak. To discover whether tek-
tek shares between subaks are also equitable, in earlier work‡

we measured irrigation flows at the intakes to the primary
canals for ten subaks that jointly coordinate their irrigation
schedules at the regional water temple Masceti Pamos Apuh
(Table S1 and Fig. S3). The r correlation is perfect. In a
survey of 150 farmers from these 10 subaks, in answer to the
question "Is the division of water by the Pamos water temple
equitable?", all said yes [4].

When cooperation breaks down, subaks cease to monitor
the allocation of tektek and tektek alit, and farmers are free to

‡Lansing JS, Cox MP, Downey SS, Jannsen MA, Schoenfelder JW (2009) A robust budding model
of Balinese water temple networks. World Archaeology 41(1):112-133.
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plant whenever they like. This condition is described as tulak
sumur (translated by Lansing as “reject the wellspring” and
in a Balinese-English dictionary more idiomatically as “sow
rice at the wrong time”§). In tulak sumur, upstream farmers
are under no obligation to share water with their neighbors.
However, the resulting asynchrony of rice growth in adjacent
fields creates ideal conditions for the rapid growth of rice pests,
including rats, insects and insect-borne diseases

Tulak sumur was legally mandated in Bali in the 1970’s to
support the introduction of the Green Revolution rice, by en-
couraging farmers to plant as often as possible. This triggered
the tail-ender problem, because upstream farmers were able to
plant continuously, while downstream farmers often could not
plant at all. As noted above, this policy led to a rapid buildup
of pest populations and harvest failures, and was soon discon-
tinued. Still, from time to time some subaks abandon the
goal of collectively enforcing equal water shares, which leads
to tulak sumur [13]. Three examples of such breakdowns at
the subak level are discussed in Chapter 4 of Lansing’s Per-
fect Order [4]. In all cases, the farmers soon returned to the
consensual management of irrigation by their subak.

How well does the simple decision rule in the lattice model
(imitate your most successful neighbor) capture the process
by which farmers and subaks adjust their irrigation sched-
ules? In reality, the farmer’s decisions reflect the imperatives
of the terraced landscape, where fields must be kept flat and
protected by bunds to turn them into shallow ponds. The av-
erage farm is about 0.3 hectares and consists of many small ad-
jacent ponds. Peak irrigation demand occurs at the beginning
of each planting cycle, to create the ponds. Afterwards, the
tiny irrigation channels that connect the ponds require con-
tinuous monitoring. Farmers often borrow water from their
upstream neighbors; a debt that can be repaid later on by
temporarily blocking the flow to their own fields. A farmer
who cannot borrow water from one upstream neighbor can
try to borrow from others whose fields are either adjacent to
the first upstream neighbor or further upstream. For these
reasons, decisions about water sharing, irrigation schedules
and the need for pest control begin with conversations among
small groups of neighboring farmers. Importantly, this is true
for upstream farmers as well as those whose fields are located
downstream. Subak meetings provide a venue to reach a con-
sensus. An analogous process occurs in the lattice model, as
neighbors create synchronized patches that eventually become
correlated, equalizing water sharing .

This result sheds new light on the tail-ender problem in the
Balinese context. Several authors have argued, largely on a
priori grounds, that some form of centralized water control by
Bali’s rulers must have existed in the past. In an earlier publi-
cation we evaluated these claims and argued that no historical
or empirical evidence exists in support of this claim [13]. But
how then was the tail-ender problem solved? Adaptive SOC
offers an explanation.

Satellite images. We select six rice-growing regions and use
high-resolution, multispectral and panchromatic satellite im-
agery to extract information of the current state of cropping
patterns in rice terraces on a pixel basis. We acquired Quick-
bird, GeoEye-1, WorldView-2, WorldView-3 satellite images
for the study areas courtesy of the DigitalGlobe Foundation

§Norbert Shadeg, Balinese-English Dictionary. 2007. Singapore & Tokyo: Tuttle Publishing, page
458.

(www.digitialglobefoundation.org). We calculated a normal-
ized difference vegetation index (NDVI), a measure of active
photosynthesis in vegetation, from the multispectral imagery
and image texture as a 2 m focal standard deviation from the
panchromatic imagery in ArcGIS 10.2 (ESRI, Inc.); previous
research established relations between rice growth stages and
NDVI or image texture. We used an object-oriented classi-
fier to segment the images into individual rice fields based on
NDVI and attributed each segment with information related
to average NDVI value, average texture, and compactness in
ArcGIS. A preliminary classification characterized each seg-
ment into four cropping patterns each corresponding to one
quarter of the 120-day rice cycle: prepared fields and recent
rice plantings (low NDVI/low texture; red in figures), rice
at peak greenness (high NDVI/low texture; blue in figures),
ripening stage (high NDVI/high texture; yellow in figures),
and drying or harvest stage (low NDVI/high texture; green
in figures); non-compact linear features (e.g. roads) were ex-
cluded from the classification. We resampled the final classifi-
cation to a 5 m resolution to determine consolidated patches¶.
We define a patch as a connected region of the same stage of
cropping activity. To determine a patch, we use the breadth-
first search algorithm which searches for connected compo-
nents. It starts at an initial site and first explores the neigh-
boring sites, before moving to the next-nearest neighbors, and
then the next-next-nearest neighbors, etc. Neighboring sites
with same cropping stages as the initial site are marked and
put on a traversing queue. The search stops when there is
no more site in the queue. A new search then begins. The
process continues until all sites have been marked to belong
to a patch. Numbers and respective sizes of the extracted
patches are then recorded. All regions are found to exhibit
similar approximate power-law distribution patch sizes. For
several sites we repeated this analysis at several observation
times that were selected randomly based on the clarity (cloud
cover) of available imagery. See below for all image classifica-
tions and analyses.

The regions. Table S2 provides the estimated power-law expo-
nents α and the correlation lengths ε, as obtained from the im-
age analyses of the six study sites at various observation times
(see above). Some variation is apparent on different dates at
the same sites. The maximum variation in α is about 0.2 for
the patch size distribution in Gianyar, while its correlation
length differs by more than 400 m within the three years.

Estimation of power-law exponents. We fit empirical- and
model data of patch sizes s to a power-law. The exponent
α̂ is obtained with a straightforward maximum likelihood es-
timator (MLE) as e.g. described in Clauset et al.‖,

α̂ = 1 + logc

[
1 +

(
(z − 1) − logc bmin + 1

n

l∑
i=min

ihi

)−1]
.

[1]
¶Mosleh MK, Hassan QK, Chowdhury EH (2015) Application of Remote Sensors in Mapping Rice

Area and Forecasting Its Production: A Review. Sensors 15(1):769-791; Lobo A, Chic O, Casterad
A (1996) Classification of Mediterranean crops with multisensor data: per-pixel versus per-object
statistics and image segmentation. International Journal of Remote Sensing 17(12):2385-2400;
Nuarsa W, Nishio F, Hongo C (2011) Spectral characteristics and mapping of rice plants using
multi-temporal Landsat data. Journal of Agricultural Science 3(1):54; Conrad C, Fritsch S, Zeidler
J, Ruecker G, Dech S (2010) Per-field irrigated crop classification in arid Central Asia using SPOT
and ASTER data. Remote Sensing 2(4):1035-1056.

‖Clauset A, Shalizi CR, Newman MEJ (2009), Power-law distributions in empirical data, SIAM review
51(4):661–703.
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Study sites Exponent α Correlation length ε [m]
Mengwi 1.13 (0.08) 578.6
Gianyar 2013 1.07 (0.08) 696.8
Gianyar 2014 0.93 (0.07) 372.6
Gianyar 2015 1.13 (0.07) 261.2
Klungkung 2013 0.97 (0.07) 471.8
Klungkung 2014 0.88 (0.07) 511.3
Klungkung 2015 0.85 (0.07) 335.6
Kusamba 2013 1.19 (0.09) 761.5
Kusamba 2014 1.14 (0.09) 552.2
Kusamba 2015 1.18 (0.14) 606.5
Sukawati 2014 0.76 (0.09) 1413.4
Tabanan 2002 0.95 (0.09) 501.6
Tabanan 2013 1.08 (0.17) 566.4

Table S2. Power-law exponent estimates α and correlation lengths
ε for 13 measurements (observations) in six rice-growing regions of
Bali.

We use logarithmic binning with the bin-boundaries B =(
cz, cz+1, · · · , cz+l

)
. Boundaries grow as successive powers

of some constant (logarithmic spacing), c = 3; z is the power
of the smallest bin of 128 pixels (corresponding to 3200 m2)
which is the typical size of a farm. bmin is the smallest bin for
which the power-law holds; in our case it is bmin = 1. hi is
the number of observations in bin i, l is the number of bins,
and n is the total sum of the number of observations in the
bin at or above the smallest bin bmin. The standard error as-
sociated with α̂ is σ = [cα̂ − c]/[c(1+α̂)/2 (ln c)

√
n]. Note that

α = α̂ − 1.
We use the Kolmogorov-Smirnov (KS) statistic to quantify

the distance between two probability distributions: KS =
max |S(b) − P (b)| for b ≥ bmin, where S(b) is the cumulative
distribution function (CDF) of the data of the observation
and P (b) is the CDF of the power-law model that best fits
the data.

Further details on the model: pest radius and decision rules.
The adaptive SOC model for the subaks described in this pa-
per generalizes the qualitative behavior of a simulation model
of Balinese subaks developed by James N. Kremer and J.
Stephen Lansing in the 1990’s∗∗, which calculated reductions
in rice harvests caused by water shortages and pest losses for
173 Balinese subaks along the Oos and Petanu Rivers. The
purpose of the adaptive SOC model described here is to gen-
eralize the Kremer-Lansing model. More specifically, it was
created to investigate the possibility of a transition from local
to global control or connectivity.

The model has already been described in the main text
where the consequences of adaptation to both the local effect
of pests and the global water constraint is shown to cause
power-law behavior. Here, we describe two details of the
model that have not been mentioned in the main text.

First, the radius r is the pest radius which defines the area
around each farm that is affected by local pest populations
(see also Step 1). The pest radius in the model depends on
the biology of local rice pests such as rats, insects and bacte-
rial and viral diseases spread by insects. Neither the model
nor the decisions of the farmers are fine-tuned to the biol-
ogy of specific pest species. Instead, farmers manipulate the

∗∗Lansing JS, Kremer JN (1993) Emergent properties of Balinese water temple networks: coadapta-
tion on a rugged fitness landscape. American Anthropologist 95(1):97-114.

areal extent of synchronized fallow episodes to disrupt pest
habitat††.

Second, the decisions of all farmers in the model to update
their irrigation schedules are made simultaneously. If there
is more than one neighbor with the same largest harvest, a
random choice is made as to which neighbor to copy. For
farmers at the edges and corners of the lattice, the comparison
is made only with those nearest neighbors that are within the
lattice. There are no periodic boundary conditions.

The decision rule for updating irrigation schedules (Step
3 described in main text) was chosen not because it is actu-
ally followed, but to test whether a very simple rule is all
that is required to drive the system to the critical point when
the parameters are set to the critical line b/a = 20. To dis-
cover whether the choice of strategy significantly affects the
dynamics, we implemented 3 alternative strategies, in which
the choice of strategy is random, or followed by the major-
ity/minority of the neighbors (majority/minority strategies).
Fig 3b shows that optimal results are obtained by the maxi-
mum strategy, followed by the majority strategy.

Random updates of a few irrigation schedules. As noted in
previous publications‡‡, typically a few farmers in each subak
do not strictly follow the irrigation schedules agreed upon
in the subak meetings. To capture this effect in the model,
we introduce a noise effect after the synchronous update is
completed. The noise mechanism first determines a random
site (x, y) (lattice distances in x and y direction from the lower
left corner) within the lattice, and a block size of dimension
M ×M is randomly chosen. M is an integer from 1 to N from
a uniform distribution. We set N = 4. Lattice sites within
the block located at lattice coordinates (x, y) are assigned one
of the four possible irrigation schedules with probability 1/4.
If the selected block bypasses the boundary of the lattice, it
is rejected and a new selection is made. This noisy update
continues until a preset fraction f of sites is updated. We use
f = 0.05.

Comparing the model results with satellite data. To compare
the model results with the satellite imagery, it is necessary to
relate their pixel dimensions. The size of a farm in a subak is
approximately one-third of a hectare or about 3200 m2. One
pixel in the satellite imagery is equivalent to an area of 25
m2. Consequently, the size of one farm is equivalent to about
128 pixels. Satellite images typically contain 700 × 700 pixels,
which corresponds to a lattice of approximate dimensions of
60 × 60. This leads to reasonable lattice sizes of L = 30, 50
and 100, which we used for simulations. In the paper only
results for L = 100 are shown. For L = 100, one lattice site
has a length of about 20 m. In Figs. 1c and d the satellite
images and the model results are both presented in meters.

The phase diagram of the model. The phase diagram of the
model is shown in Fig. S4. As Figs. 4b and c in the main
text suggest, there are 3 parameter regions where variation
in a and b leads to different values of patch distributions and

††Lansing JS, De Vet T (2012) The functional role of Balinese water temples: A response to critics.
Human ecology 40(3):453-467.

‡‡Lansing JS, et al. (2014) Regime shifts in balinese subaks. Current anthropology 55(2):232-239;
Lansing JS, De Vet T (2012) The functional role of Balinese water temples: A response to critics.
Human ecology 40(3):453-467.
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Fig. S4. Phase diagram of the model. (a) Depending on the parameter region in a

and b, there exist 3 separate phases, the “patchy” phase, which is the water stress
dominated phase, W . A “quadrant” phase, Q, is found if pest stress is dominant.
For the case of no water stress, b = 0, there exists a phase that has a single
cropping pattern, the “uniform” phase, U . The shape of the phase diagram (b) can
be understood by noticing that the relevant parameter in the model is the fraction of
the stress factors, b/a. Noise block size is N = 4, t = 4000.

correlation lengths. The harvests can be scaled

H = aH ′ = a

(
H ′

0 − 1
0.1 + fp

− b

a
fw

)
.

The behavior of the model is given by the scaled system H ′,
which essentially depends on the ratio of b/a. The model
is therefore effectively one-dimensional. The fact that the
model depends only on b/a further explains why the phase
boundaries in the phase diagrams are straight, radial lines.
Depending on the ratio b/a, we find three attractor regions
(phases) as depicted in Fig. S4a. When b > 20a water stress
dominates and the lattice becomes patchy; this is the water
stress dominated phase W . For smaller values of b for the same
a, we see that a quadrant state is reached that separates the
four irrigation schedules into four approximate quadrants in
the lattice. This phase we call quadrant phase, Q. This state
is reached after a very long transient phase in the simulations.
In the figure we use t = 4000 timesteps for the simulations;
noise with a maximum block size of N = 4 was used. In Fig.

S4b we show the schematic phase diagram of the model. The
critical line separates the phases W and Q. The uniform state
emerges when no water stress (b = 0) affect harvests and when
noise (N = 4) is present in the model. The shape of the phase
diagram can be understood by the effectively one-dimensional
nature of the model, i.e. that the relevant parameter in the
model is the fraction of the stress factors, b/a.

Power-laws at the critical transition line (b = 20a). To clar-
ify what happens at the phase transition line b/a ∼ 20, we
compute the patch size distribution functions along two lines
in parameter space, one across and one along the critical line.
The lines where distributions were measured are shown in Fig.
S5 (white dots). The distributions across the critical line for
b = 5 and various values of a = 0.11, 0.13, ..., 0.39 are shown
in Fig. S5b. Clearly, only for the value a = 0.25 a good power-
law is observed for the distribution. This is further quantified
by the Kolmogorov-Smirnov value obtained from the maxi-
mum likelihood estimation vs. the parameter a, as shown in
Fig. S5d. It shows a distinct minimum at a = 0.25, indicating
a small deviation from an exact power-law. For lower (higher)
values, distributions are decaying faster (slower) than an exact
power-law. The distribution functions along the critical line
at several points are shown in Fig. S5c. Clearly, a power-law
exists consistently along the line b = 20a with an exponent
of approximately 0.8, in perfect agreement with the observed
data. The Kolmogorov-Smirnov value is shown in the individ-
ual panels. These findings clearly indicate the existence of a
critical transition at b ∼ 20a.
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Fig. S5. (a) Power-law exponent α in parameter space, as in Fig. 4b. Positions
where patch size distributions were calculated across and along the critical line b ∼
20a are marked as white squares. (b) Patch size distributions across the critical line
in double logarithmic units for b = 5 and a = 0.11, 0.13, ..., 0.39. It is visible
that only for the value a = 0.25 a power-law is observed in the distribution. For
lower (higher) values of a, distributions are decaying faster (slower) than an exact
power-law. (c) Distributions along the critical line for a = 0.07, 0.12, 0.37, 0.49
and b = 20a. (d) The Kolmogorov-Smirnov value vs. parameter a across the
critical line for fixed b = 5. A clear minimum is observed at a = 0.25, indicating a
good power-law fit exactly at the critical line, b = 20a.
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Patch size distributions and correlation distances for additional regions

Gianyar 2013
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Fig. S6. (a) Satellite imagery of the cropping patterns of the Gianyar region for the year 2013; (b) its patch size distribution (red circle) with power-law fit to data (black line),
and (c) a plot of its correlation function.

Gianyar 2015
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Gianyar 2015
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Fig. S7. (a) Satellite imagery of the cropping patterns of the Gianyar region for the year 2015; (b) its patch size distribution (red circle) with power-law fit to data (black line),
and (c) a plot of its correlation function.
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Klungkung 2013
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Fig. S8. (a) Satellite imagery of the cropping patterns of the Klungkung region for the year 2013; (b) its patch size distribution (red circle) with power-law fit to data (black line),
and (c) a plot of its correlation function.

Klungkung 2014
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Klungkung 2014
power−law [α=0.9]
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Fig. S9. (a) Satellite imagery of the cropping patterns of the Klungkung region for the year 2014; (b) its patch size distribution (red circle) with power-law fit to data (black line),
and (c) a plot of its correlation function.
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Klungkung 2015
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Fig. S10. (a) Satellite imagery of the cropping patterns of the Klungkung region for the year 2015; (b) its patch size distribution (red circle) with power-law fit to data (black
line), and (c) a plot of its correlation function.
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Fig. S11. (a) Satellite imagery of the cropping patterns of the Kusamba region for the year 2013; (b) its patch size distribution (red circle) with power-law fit to data (black line),
and (c) a plot of its correlation function.
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Kusamba 2014
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Kusamba 2014
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Fig. S12. (a) Satellite imagery of the cropping patterns of the Kusamba region for the year 2014; (b) its patch size distribution (red circle) with powerlaw fit to data (black line),
and (c) a plot of its correlation function.
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Fig. S13. (a) Satellite imagery of the cropping patterns of the Kusamba region for the year 2015; (b) its patch size distribution (red circle) with powerlaw fit to data (black line),
and (c) a plot of its correlation function.
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Mengwi
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Fig. S14. (a) Satellite imagery of the cropping patterns of the Mengwi region; (b) its patch size distribution (red circle) with power-law fit to data (black line), and (c) a plot of
its correlation function.

Sukawati 2014
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Fig. S15. (a) Satellite imagery of the cropping patterns of the Sukawati region; (b) its patch size distribution (red circle) with power-law fit to data (black line), and (c) a plot of
its correlation function.
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Tabanan 2002
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Fig. S16. (a) Satellite imagery of the cropping patterns of the Tabanan region for the year 2002; (b) its patch size distribution (red circle) with power-law fit to data (black line),
and (c) a plot of its correlation function.

Tabanan 2013
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Fig. S17. (a) Satellite imagery of the cropping patterns of the Tabanan region for the year 2013; (b) its patch size distribution (red circle) with power-law fit to data (black line),
and (c) a plot of its correlation function.
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Matlab codes

Kremer_Lansing_Model.m

function [spin,harvest] = Kremer_Lansing_Model(N, nrstates, pestradius, harvestradius, temp, nblock, T, a, b, counter)

% This program simulates the evolution of cropping pattern (started from
% random) and stop at time step T
% N: dimension of the lattice
% nrstates: number of cropping patterns
% pestradius: the spatial extent at which the pests can affect harvests
% harvestradius: farmers are comparing their harvest to other farmers
% within this radius, a harvestradius of 1 includes 4 neighbors on the
% lattice
% temp: probability to chose state randomly
% nblock: maximum noise block to be included
% T: number of timesteps
% counter: show the time step if counter>1
% a: pest stress
% b: water stress
% example: N=100;
% nrstates=4;
% pestradius=2;
% harvestradius=1;
% temp=0.05;
% nblock=4;
% a=0.5;
% b=9.6;
% T=4*N;
% counter=50;
% [spin,harvest] = Kremer_Lansing_Model(N,nrstates,pestradius,harvestradius,temp,nblock,T,a,b,counter);
% figure(1)
% imagesc(spin)

%INITIALIZE

h0=5; % maximal achievable harvest (payoff)
p = zeros(N,N); % pest load ()
w = zeros(N,N); % waterstress
h = zeros(N,N); % harvest
s = randi(nrstates,N); % random states assigned
s2 = s; % updated states
t=0;

% TIME EVOLUTION

while t<=T
if counter>1
if mod(t,counter)==0
display(t)
end
end
f=[]; % update fraction of nodes in particular states
for iz=1:nrstates
f=[f length(find(s==iz))];
end
f=f/N^2;
for i=1:N
for j=1:N
ilimit1=max(1,i-pestradius);
ilimit2=min(N,i+pestradius);
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SpinNeigh=[]; % vector of state values in neigborhood to compute pest load
for qq=ilimit1:ilimit2
width=pestradius-abs(qq-i);
jlimit1=max(1,j-width);
jlimit2=min(N,j+width);
SpinNeigh=[SpinNeigh s(qq,jlimit1:jlimit2)];
end

% update water and pests and harvest

w(i,j) = f(s(i,j));
p(i,j) = 1/ ( 0.1+ (length(find(SpinNeigh==s(i,j)))-1) /(length(SpinNeigh)-1) ) ;
h(i,j) = h0-a*p(i,j)-b*w(i,j);
end
end

% go throuh nodes randomly (not necessary!)

xs=randperm(N);
ys=randperm(N);
for i=xs
for j=ys

% check nearest neighbors’ harvests of past timestep

lowerlimiti=max(1,i-harvestradius);
upperilimiti=min(N,i+harvestradius);
HarvestNeigh=[];
Neigh=[];
for qq=lowerlimiti:upperilimiti
width=harvestradius-abs(qq-i);
lowerlimitj=max(1,j-width);
upperlimitj=min(N,j+width);
HarvestNeigh=[HarvestNeigh h(qq,lowerlimitj:upperlimitj)];
Neigh=[Neigh; qq*ones(upperlimitj-lowerlimitj+1,1), (lowerlimitj:upperlimitj)’];
end
iii=find(HarvestNeigh==max(HarvestNeigh)); % find neigbor with maximal harvest
if length(iii)>1, iii=iii(randsample(length(iii),1)); end

% update state variable (copy most successful neighbor if he is better than you)

if h(Neigh(iii,1), Neigh(iii,2)) > h(i,j),
s2(i,j)= s(Neigh(iii,1), Neigh(iii,2));
else s2(i,j)=s(i,j);
end
end
end
if temp>0
Nu=0;
while Nu<temp*N^2
mu=randsample(N,2,’true’);
LL=randsample(nblock,1);
if mu(1)+LL-1<=N && mu(2)+LL-1<=N
s2(mu(1):mu(1)+LL-1,mu(2):mu(2)+LL-1)=ones(LL,LL)*randi(nrstates,1);
Nu=Nu+LL^2;
end
end
end
s=s2; % update state
t=t+1;
end
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spin=s;
harvest=h;
end

%---------------------------------------------------
PatchSize.m
function [S,T] = PatchSize(spin)

% Function PatchSize gives size (S) and cropping pattern (T) of each patch.
% spin: an NxM matrix which specifies the cropping pattern of each site.
% Sites are connected as a two-dimensional lattice, i.e. each site is
% connected to four nearest neighbors.
% Cropping patterns are denoted by nonzero integers,
% sites with no data are represented by negative integers
% example: spin=randi(4,5,5); % 5x5 lattice with 4 cropping patterns
% [S,T]=PatchSize(spin);

sz=size(spin); % dimension of spin (NxM)
N=sz(1);
M=sz(2);
k=4; % each site is connected to four nearest neighbors
List=zeros(N*M,k); % Adjacency list
for jj=0:N-1
for kk=0:M-1
v=(kk)*N+jj+1;
link=1;
if jj-1>-1
vN=(kk)*N+(jj-1)+1;
List(v,link)=vN;
link=link+1;
end
if jj+1<N
vS=(kk)*N+(jj+1)+1;
List(v,link)=vS;
link=link+1;
end
if kk+1<M
vE=(kk+1)*N+(jj)+1;
List(v,link)=vE;
link=link+1;
end
if kk-1>-1
vW=(kk-1)*N+(jj)+1;
List(v,link)=vW;
link=link+1;
end
end
end
degree=zeros(N*M,1); % degree of the lattice
for ii=1:N*M
degree(ii)=length(find(List(ii,:)~=0));
end
cluster=zeros(1,N*M); % cluster which each site belongs to
Nc=1; % index of cluster
T=zeros(N,1);

% assignes cluster index to each site

for nn=1:N*M
Origin=nn;
if cluster(Origin)==0
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crop=spin(mod(Origin-1,N)+1,ceil(Origin/N));
if crop>0
cluster(Origin)=Nc;
T(Nc)=crop;
Queue=zeros(1,N*M);
Queue(1)=Origin;
q=1;
uu=1;
while Queue(uu)>0
current=Queue(uu);
Connected=List(current,1:degree(current));
for j=1:length(Connected)
if spin(mod(Connected(j)-1,N)+1,ceil(Connected(j)/N))==crop && cluster(Connected(j))==0
cluster(Connected(j))=Nc;
Queue(q+1)=Connected(j);
q=q+1;
end
end
uu=uu+1;
end
Nc=Nc+1;
end
end
end
T=T(1:max(cluster));
S=zeros(max(cluster),1);
for cc=1:max(cluster)
S(cc)=length(find(cluster==cc));
end
end

%-----------------------------------------------------

NormalizedCorrelationSpinLattice.m
function [ MI,Lstat,xi ] = NormalizedCorreletionSpinLattice(spin,Dcut)

% Function NormalizedCorreletionSpinLattice gives correlation between spins separated by distance d, for d=0,1,2,..,Dcut.
% Correlation is quantified by mutual information (MI).
% spin: an NxM matrix which specifies the cropping pattern of each site.
% Sites are connected as a two-dimensional lattice, i.e. each site is
% connected to four nearest neighbors.
% Cropping patterns are denoted by nonzero integers, s=1,2,3,...,ns
% sites with no data are represented by negative integers, e.g. -9999
% MI: Correlation function
% xi: Correlation distance
% Lstat: size of the statistical sample used to calculate the
% correlation at each distance
% example: spin=randi(4,10,10); % 10x10 lattice with 4 cropping patterns
% Dcut=5;
% [ MI,Lstat,xi ] = NormalizedCorreletionSpinLattice(spin,Dcut);

sz=size(spin); %dimension of spin
N=sz(1);
M=sz(2);
ns=max(max(spin)); % number of different cropping patterns
Lstat=zeros(1,Dcut+1);
MI=zeros(1,Dcut+1);
Q=zeros(ns,ns,Dcut+1);
for x1=1:N
for y1=1:M
for x2=max(x1-Dcut,1):min(x1+Dcut,N)
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for y2=max(y1-Dcut,1):min(y1+Dcut,M)
D=abs(x1-x2)+abs(y1-y2);
if D>=0 && D<=Dcut
if spin(x1,y1)>0 && spin(x2,y2)>0
Q(spin(x1,y1),spin(x2,y2),D+1)=Q(spin(x1,y1),spin(x2,y2),D+1)+1;
end
end
end
end
end
end
SQ=size(Q);
for dd=1:SQ(3)
Lstat(dd)=sum(sum(Q(:,:,dd)));
P=Q(:,:,dd)/Lstat(dd);
MI(dd)=MutualInformation(P,ns);
end
MI=MI/MI(1);
R=0:Dcut;
xi=sqrt((R.^2*MI’)/sum(MI));
end
function [ MI ] = MutualInformation( P,ns )
MI=0;
for rr=1:ns
for ss=1:ns
Px=sum(P(rr,:));
Py=sum(P(ss,:));
if Px~=0 && Py~=0 && P(rr,ss)~=0
MI=MI+P(rr,ss)*log2( P(rr,ss)/(Px*Py) );
end
end
end
end
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